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Executive Summary 

 This is the first of a series of reports that will present and evaluate methods for improving 

how toxic effect levels in aquatic organisms are addressed in the formulation and application of 

U.S. Environmental Protection Agency (U.S. EPA) water quality criteria for the protection of 

aquatic life.  This work is being conducted in support of efforts by the Aquatic Life Criteria 

Guidelines Committee of the U.S. EPA Office of Water to develop new guidelines for derivation 

of aquatic life criteria.   

 Section 1 summarizes the current formulation of aquatic life criteria and identifies certain 

limitations regarding how well toxic effects on aquatic organisms are quantified in these criteria 

as a function of the magnitude and time-variability of exposures.  It then broadly describes how 

better quantification of toxic effects could address these limitations and improve criteria utility. 

 Section 2 describes various models for the assessment of binary toxicity endpoints 

(yes/no responses such as death) that could be useful in better describing such effects in aquatic 

life criteria.  It then broadly describes how these models can be parameterized based on standard 

toxicity test data and what considerations should go into selecting a model for actual use in 

criteria. 

 Section 3 presents a case study that establishes the feasibility of model parameterization 

and demonstrates that these models can adequately describe the observed time-variability of 

copper lethality to juvenile fathead minnows for relatively short (#8 d), constant and intermittent 

exposures.  This section also demonstrates how these models can provide information useful to 

criteria and that this information might be adequate for criteria applications using relatively 

simple models rather than more complicated models that would be difficult to implements.  

 Subsequent reports will address model formulations for other endpoints; other case 
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studies regarding both acute and chronic exposures and both lethal and sublethal endpoints; and 

recommendations regarding the application of these models to aquatic life criteria, including 

minimum data requirements for model parameterization.  These reports will provide the 

technical basis for developing the guidance for using these models to criteria, but are not 

intended to provide the actual guidance.  



Section 1: Background – Aquatic Life Criteria Limitations and Needs 

1.1 Introduction 

 This is the first of a series of reports that will present and evaluate methods for improving 

how toxic effect levels to aquatic organisms are addressed in the formulation and application of 

U.S. Environmental Protection Agency (U.S. EPA) water quality criteria for the protection of 

aquatic life (“aquatic life criteria” or "ALC").  This work is being conducted in support of efforts 

by the Aquatic Life Criteria Guidelines Committee of the U.S. EPA Office of Water to develop 

new guidelines for derivation of aquatic life criteria.   

 This background section summarizes the current formulation of aquatic life criteria and 

identifies certain limitations regarding how well toxic effects on aquatic organisms are quantified 

in these criteria as a function of the magnitude and time-variability of exposures.  It then broadly 

describes how better quantification of toxic effects could address these limitations and improve 

criteria utility.  Section 2 will describe various models for the assessment of binary toxicity 

endpoints that could be useful for better describing such effects in criteria as a function of 

exposure magnitude and time-variability.  Section 3 will present a case study evaluating how 

well such models describe the observed time-variability of copper lethality to juvenile fathead 

minnows over relatively short (#8 d) exposures.   

 Subsequent reports will address model formulations for other endpoints; other case 

studies regarding both acute and chronic exposures and both lethal and sublethal endpoints; and 

recommendations regarding the application of these models to aquatic life criteria, including 

minimum data requirements for model parameterization.  It should be noted that the case studies 

in this series of reports are intended to provide the detailed technical basis for the development of 

guidance for the use of these models in ALC, but will provide neither this actual guidance nor 
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elementary explanations of statistical and other mathematical procedures that might be needed in 

such guidance.  

1.2 Overview of Current Criteria Formulation  

 U.S. EPA aquatic life criteria are usually derived from laboratory toxicity test results 

using procedures described in “Guidelines for Deriving Numerical National Water Quality 

Criteria for the Protection of Aquatic Organisms and Their Uses” (Stephan et al.1985), hereafter 

referred to as the "Guidelines."  These criteria consist of two concentrations – the Criterion 

Maximum Concentration (CMC) and the Criterion Continuous Concentration (CCC).   

 The CMC is determined based on available “acute values” (AVs) – median lethal 

concentrations (LC50s) or median effect concentrations (EC50s) from aquatic animal acute 

toxicity tests meeting certain data quality requirements.  To compute a CMC, the Guidelines 

require that acceptable AVs be available for at least eight genera with a specified taxonomic 

diversity.  For each genus, a Genus Mean Acute Value (GMAV) is calculated by first taking the 

geometric average of the available AVs within each species (Species Mean Acute Value, 

SMAV) and then the geometric average across the SMAVs within the genus.  The fifth 

percentile of the set of GMAVs so obtained is calculated based on a specified estimation 

procedure, and designated the Final Acute Value (FAV).  The FAV might be lowered to the 

SMAV for an important, sensitive species as appropriate.  The CMC is set equal to half of the 

FAV to represent a low level of effect for the fifth percentile genus, rather than 50% effect.  The 

CMC is used in criteria to limit peak exposures by requiring that 1-h averages of exposure 

concentrations not exceed the CMC more often than once in three years on average.  It should be 

noted that use of a 1-h averaging period is not equivalent to a 1-h exposure, but rather to a longer 

exposure in which the worst hour is equal to the CMC.   
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 The CCC is generally determined based on available “chronic values” (CVs), which are 

either (a) the geometric average of the highest no-observed-effect concentration (NOEC) and 

lowest observed effect concentration (LOEC) for effects on survival, growth, or reproduction in 

aquatic animal chronic tests or (b) in some recent criteria, the EC20 in such tests based on 

concentration/effect regression analyses.  If CVs are available for at least eight genera with the 

required taxonomic diversity, the CCC is set to the fifth percentile of genus mean chronic values 

(GMCVs), by the same procedure used to derive an FAV from GMAVs.  Otherwise, the CCC is 

set to the FAV divided by a “final acute chronic ratio” (FACR) that is based on acute:chronic 

ratios (the ratio of the AV to the CV from parallel acute and chronic tests) for at least three 

species with a specified taxonomic diversity.  The CCC can also be based on plant toxicity data 

if aquatic plants are more sensitive than aquatic animals, or on other data as deemed 

scientifically justified.  The CCC is used in criteria to limit more prolonged exposures by 

requiring that 4-d averages of exposure concentrations not exceed the CCC more often than once 

in three years on average. 

1.3 Limitations of Current Criteria Formulation  

 Criteria derived as described above are limited in the following ways regarding how well 

the likelihood and magnitude of toxic effects are quantified: 

(1) Only one level of effect is considered, rather than how levels vary with exposure.  
Acute toxicity analyses are based just on 50% effect, with no specific consideration of 
greater or lesser effects or of how rapidly the level of effect changes with concentration.  
Chronic toxicity analyses likewise consider only a single level of effect, based either on 
what is statistically significant or on some specified level of effect (e.g., 20%). 

(2) The actual level of effect represented by criteria concentrations is not well defined.  
For acute toxicity, the analysis does start with a specific level of effect (50%), but the 
division of the FAV by a factor of 2 results in the CMC corresponding to an unquantified 
low level of effect for the fifth percentile species, and unspecified levels of effects for 
more tolerant and sensitive species.  For chronic toxicity, CVs based on statistically 
significant effects can represent a wide range of effect levels depending on the design and 
quality of the toxicity tests and the variability of responses. 
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(3) Whatever effect levels are represented by criteria concentrations, they correspond to 
laboratory exposures with roughly constant concentrations for fixed durations, unlike 
natural systems, where exposures generally have no specific duration and can vary 
markedly with time.  For acute toxicity, the toxicity test duration is 48-96 h (depending 
on test species), and no assessment is made of how LC50s differ for shorter or longer 
durations, or due to concentration variability within these time periods.  For chronic 
toxicity, durations can vary from several days to several months or more, but effects for 
any one test represent a specific exposure regime that is unlikely to be close to those to 
which criteria are applied. 

(4) Criteria address the issue of duration and concentration variability by requiring 
exposure concentrations to be below criteria concentrations when averaged over periods 
shorter than the durations of toxicity tests used to derive the criteria concentrations.  Such 
an averaging period is intended to preclude exposure concentrations from being 
substantially higher than criteria concentrations for more than a small fraction of the test 
duration, thus ensuring effect levels stay within an acceptable range.  However, the level 
of effect that criteria will then represent will depend on the magnitude and pattern of 
exposure variability, which constitutes another uncertainty regarding the effect levels 
actually represented by criteria conditions. 

 Some of these limitations are 

illustrated in Figure 1.1.  In this figure, three 

exposure time-series are compared to a 

hypothetical CCC based on chronic tests with 

a 30-d duration and implemented with a 4-d 

averaging period.  In Figure 1.1A, a 

moderately variable exposure time-series is 

shown that satisfies the criterion 

concentration because, although 

concentrations on some days exceed the 

criterion, the maximum 4-d average does not.  

In Figure 1.1B, the exposure time-series also 

satisfies the criterion, but has much lower 

Figure 1.1.  Three hypothetical exposure 
concentration time-series ( ) compared to  a 
criterion concentration ( ). 
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variability.  Its peak concentration is slightly lower than the first time-series, but its overall 

average is much higher and exposure concentrations are near the criterion concentration almost 

all of the time.  For most toxicants, these two time-series should have different effect levels, but 

criteria treat them as being of equal concern.  What level of effect, therefore, does satisfying the 

criterion actually represent?  In Figure 1.1C, the exposure time-series is much more variable and 

violates the criterion, but the average concentration for the overall time-series is lower than in the 

two time-series that do not violate the criterion.  Given that the peak concentrations in this time-

series are only present for a short portion of the duration of the toxicity tests used to derive the 

criterion, does this time-series truly represent more severe effects than the other two?   

 These issues and questions can cause difficulties and uncertainties in applying criteria to 

the management of discharges and the interpretation of ambient monitoring data.  Because 

criteria represent low, incompletely-defined levels of effect and because the magnitude of effects 

expected from concentrations above criterion concentrations are not quantified, it is difficult to 

assess the significance of occasional, minor-to-moderate exceedences of the criteria.  To satisfy 

the requirement that criteria exceedences be rather rare, site assessments might be more 

conservative than actually needed to limit effects to acceptable levels.  On the other hand, the 

prolonged effects of exposures being near, but not exceeding criteria, are also uncertain.  In 

general, risk management is made more difficult when the risks associated with criteria are not 

well-quantified and are not comparable across different exposure scenarios. 

1.4 Expanded Criteria Formulation to Better Quantify Toxic Effects 

 Improving the quantification of effects in aquatic life criteria will involve a variety of 

other issues, but it must start with better descriptions of the relationship of toxic effect levels to 

concentration and time.  Toxicity test analysis often involves assessing just one level of effect at 
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the end of the test (e.g., 96-h LC50).  This should be expanded to include a range of effect levels 

as a function of both concentration and time.  Furthermore, this toxicity relationship should 

accommodate concentrations being time-variable, rather than roughly constant as is the case for 

most toxicity tests. 

 
 With such a toxicity relationship, the 

impact of any concentration time-series (e.g., 

Figure 1.2A) can be expressed as a quantitative 

function of time (Figure 1.2B).  This is in 

contrast to current criterion formulations which 

treat any concentration (over a specified 

averaging period) below the criterion as being 

acceptable and any concentration above the 

criterion value being unacceptable (Figure 

1.2C).   

 Furthermore, this time-series of toxicity 

levels can be used to specify the frequency of 

any given level of effect within an exposure 

time-series.  This supports risk characterizations 

such as depicted in Figure 1.3, which shows the 

risk (=probability of occurrence) for a specified 

level of effect versus the mean exposure 

concentration.  Figures 1.2 and 1.3 were 

developed for a particular type and level of 
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Figure 1.2.  Relative impacts of a concentration 
time-series (panel A) using a time-dependent 
toxicity model (panel B) versus exceedence of a
criterion concentration (panel C).  
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Figure 1.3.  Risk of a specified type and level of effect 
versus mean exposure concentration. 
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effect and for an exposure time-series with certain variability characteristics, using one of the 

toxicity models discussed later in this report.  However, the specifics of these calculations are not 

important here, because this is intended to just exemplify the type of analyses that are possible, 

which could involve a variety of models, types of effects, and exposure scenarios.  Such analyses 

could also address measures of exposure other than mean concentration and the uncertainty of 

such risk estimates.   

 With information such as that shown in Figure 1.3, a variety of risk assessment and 

management actions regarding water quality criteria could be improved.  In general, there would 

be clearer meaning of the significance of exposures at or near the criteria limits and better 

separation of risk assessment and risk management.  The level of exposure to be permitted from 

point or nonpoint sources could be related to specific levels of risk, and these levels of risk could 

be made more comparable across different exposure conditions.  Ambient monitoring data could 

be assessed on a quantitative scale, rather than simply determining whether a semi-quantitative 

risk is exceeded.  Such a quantitative scale could also be used in the interpretation of effects 

observed in natural and experimental ecosystems, and thus improve understanding of and 

decisions about risks represented by criteria.  A significant aspect of all these improvements 

would be that criteria attainment need not be based on extreme value analysis of rare 

exceedences of criteria concentrations; rather, expected effects could be assessed based on  

more-easily measured characteristics of the exposure (e.g., the mean as in Figure 1.2), making 

implementation easier and more meaningful.   

 It should finally be noted that this approach eliminates the distinction between “acute” 

and “chronic” effects by addressing the effect of exposure time-series for any endpoint of 

interest.  Therefore, rather than having separate criteria concentrations based on acute and 
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chronic tests, criteria would include toxicity relationships addressing different endpoints.  

Because the effect of time is included in these relationships, they could be merged into a single 

relationships based on whichever endpoint is most affected under particular exposure conditions, 

or based on population dynamics models that integrate these endpoints.  Incorporating such 

expressions of risk into water quality criteria will also involve changes in how exposures are 

expressed (in particular, averaging periods would no longer be part of the criterion formulation) 

and how toxicity information across species is integrated.  However, the work here will not 

consider the overall formulation of the criteria, but rather restrict itself to models for describing 

toxic effect levels for specific endpoints as a function of concentration and time, which is a 

necessary first step in criteria changes. 

1.5 References 

Stephan CF, Mount DI, Hansen DJ, Gentile JH, Chapman GA, Brungs WA.  1985.  Guidelines 

For Deriving Numerical National Water Quality Criteria For The Protection Of Aquatic 

Organisms And Their Use.  NTIS PB 85-227049, U.S. Environmental Protection Agency, 

Washington, DC, USA.  
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Section 2:  Toxicity Model Formulations – Binary Endpoints 

 This section will review a variety of models used in aquatic toxicology for describing the 

relationship of binary toxic effects (yes/no endpoints such as death) to concentration and time.  

Two broad classes of models will be presented – "deterministic" models for which an individual 

organism will or will not respond as a strict function of the exposure, and "stochastic" models for 

which an individual organism might or might not respond, the probability of the organism's 

response being a function of the exposure.  For convenience, these models will be discussed in 

terms of mortality, but will apply to other binary endpoints as well.   

2.1 Deterministic Models 

2.1.1  Single-Compartment, Lethal-Accumulation-Threshold Model 

 Although toxicity to aquatic organisms is typically referenced to chemical concentrations 

in exposure water, this is done with recognition that effects of chemicals nearly always depend 

on the chemical being accumulated into an organism.  Studies on various chemicals, organisms, 

and endpoints have related effects to the extent of accumulation (see review by Jarvinen and 

Ankley, 1999).  Toxicity models that relate effect levels to water concentrations can be 

developed by combining information on the relationship of effect levels to accumulation 

(toxicodynamics) with models or evaluations that address the rate and extent of accumulation 

(toxicokinetics) for exposures of interest (e.g., McCarty and Mackay 1993).  The simplest such 

toxicity model for lethality can be formulated as follows: 

(1) An organism accumulates chemical by first-order, single-compartment kinetics (i.e., 

the accumulated concentration in the organism is described by a single, whole-body 

value, the gross uptake rate is proportional to the exposure concentration in the water, and 

the gross elimination rate is proportional to the accumulation):  

 ( ) ( ) ( )U E

dA t
k C t k A t

dt
= ⋅ − ⋅  (2.1) 
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where A(t) is the accumulated concentration in the organism at time t, C(t) is the exposure 

concentration in the water, kU is an uptake rate constant, and kE is an elimination rate 

constant.  For this model, accumulation at time t can be calculated for any exposure 

concentration time-series by numerical integration of Equation 2.1, or by evaluation of 

the following integral: 

 

( ) ( )

( )

0

0

U

U
E

E

SS

E

E

x t k ( t x )

x t

x t k ( t x )

x t

A t C( x ) k e dx

k C( x ) k e dx
k

BCF C( t )

= − ⋅ −

=

= − ⋅ −

=

= ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅

∫

∫  (2.2) 

where t0 is an earlier time at which accumulation is zero or low enough that it contributes 

negligibly to any accumulation at time t; BCFSS (=kU/kE) is the steady-state 

bioconcentration factor; and ( )C t  denotes a weighted running average of the water 

concentration, the weighting factor for this average decaying exponentially backward in 

time in accordance with the constant kE.  By integrating effects of exposure from t0 to t, 

Equation 2.2 reflects the fact that accumulation depends on both current and past 

exposure concentrations, with the relative importance of the concentrations decreasing 

the further back they are from the current time.  If C is constant with time and exposure 

starts at t=0, the accumulation at time t would be: 

 ( ) ( )E
SS 1 k tA t BCF C e ⋅= ⋅ ⋅ − -  (2.3) 

(2) An organism dies when A(t) reaches a lethal threshold LA.  Toxicity is assessed 

simply by tracking whether A(t) exceeds LA: 

 1
?A( t )F( t )

LA
= >  (2.4) 

where F(t) is the fraction of the lethal condition reached; i.e., the exposure is great 

enough to cause mortality if and when F(t) reaches 1. 
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 Figure 2.1 illustrates how this model 

describes if and when mortality will occur.  Panel 

A depicts a high enough exposure concentration 

that A(t) reaches LA quickly.  Panel B uses the 

same model parameters as Panel A, but has a 

lower exposure concentration that requires more 

time to reach the lethal condition.  Even lower 

exposure concentrations would further delay 

accumulation reaching the lethal level, and 

mortality would never occur if the exposure 

concentration is below that needed to reach LA at 

steady state (C@BCFss<LA).  Panel C represents 

the same concentration as Panel A, but with a 

larger kE, so that the BCFss is smaller, net 

accumulation rates decline rapidly with time, and 

A(t) at steady state is less than LA.  Panel D 

denotes a pulsed exposure with the same model 

parameters and initial concentration as Panel A, 

but with the first pulse ending before A(t) reaches 

LA.  During the cessation of exposure between 

pulses, A(t) declines, but then rises again during 

the second pulse, reaching LA. 

Figure 2.1.  Effects of exposure time-series 
( ) and kE values on accumulation ( ) 
reaching lethal level LA ( ).  For all panels, 
kU is the same.  For panel C, kE is ten-fold higher 
than for other panels. 
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 The model described by Equations 2.1 to 2.4 strictly applies just to a single organism, and 

model parameters (LA, kU, and kE) would be expected to differ among organisms.  For groups of 

organisms, these parameters would vary according to statistical distributions that need to be 

addressed to be able to evaluate statistics such as a median lethal concentration (LC50).  Thus, to 

fit this model to actual toxicity data, parameter estimation involves not just these three 

"organism-level" parameters, but rather a greater number of "distributional" parameters (e.g., the 

mean and standard deviation of a distribution for each organism-level parameter). 

 Although this accumulation-based model allows effects to be expressed as a function of 

water concentrations, it requires explicit information on toxicokinetics and on the lethal 

accumulation threshold, which is often not well established.  A study that addressed the effects 

of constant- and fluctuating-exposures of pentachloroethane on fathead minnows in relationship 

to accumulation will be presented in the second report in this series.  However, requiring explicit 

information on accumulation and its relationship to toxicity precludes the use of abundant data 

that relate toxicity just to water concentration.  Fortunately, this model can be adapted to 

describe the relationship of toxicity to exposure water concentration without explicitly 

quantifying accumulation. 

 The relationship of LC50s to exposure duration for aquatic animals often is observed to 

follow a shape similar to Figure 2.2, with LC50s declining exponentially from high values at short 

durations to a steady value (“asymptotic” or “threshold” LC50) at long durations.  This curve is 

idealized and, in practice, its shape can be more complicated due to toxicity consisting of 

multiple steps or multiple mechanisms that operate on different time scales, and due to 

physiological responses to the toxicant which alter susceptibility.  Nevertheless, a decline similar 

to that in Figure 2.2 is usually somewhat evident, provided measurements are made over a time 
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frame suitable for the chemical and test species.  

Units for time or concentration are not given in 

Figure 2.1 because these will vary among 

chemicals and test organism – for some cases, this 

curve might span just minutes, and for other cases 

it might span months or more.  

 Zitko (1979), Mancini (1983), Neely 

(1984), and Chew and Hamilton (1985) noted that 

such an exponential decline is consistent with, 

and plausibly attributable to, a model in which chemical is accumulated by first-order kinetics 

and in which death occurs when this accumulation reaches a lethal threshold (i.e., the model 

described in Equations 2.1 to 2.4).  At short durations, high concentrations are needed to 

accumulate enough chemical fast enough to reach the lethal accumulation threshold quickly.  As 

duration increases, lower water concentrations will cause mortality because there is more time 

for chemical to accumulate.  With even greater duration, accumulation approaches steady state, 

and the lethal water concentration will approach an asymptotic value equal to the LA/BCFSS (i.e., 

accumulation can never be high enough to elicit mortality if the water concentration is less than 

this).  The rate at which this asymptotic lethal water concentration is approached will be 

equivalent to the rate at which steady-state accumulation is approached. 

Figure 2.2.  Idealized relationship of lethal 
concentrations to exposure duration.  
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 Explicit information on accumulation in the model represented by Equations 2.1 to 2.4 

can be eliminated simply by dividing Equation 2.1 by LA so that it can be expressed in terms of 

the fraction of the lethal accumulation (F(t)) that is present: 
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( )

( )

( )

U E

U
E

E

LA

dA t
k C( t ) k A( t )

dt

dF t k C( t ) k F( t )
dt LA

dF t C( t )k F( t
dt LC∞

÷

= ⋅ − ⋅

= ⋅ − ⋅

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠

→

→ )

 (2.5) 

where LC4 (=LA/BCFSS) is the threshold lethal concentration, the water concentration that would 

result in accumulation equal to LA at steady state.  This equation simply states that the fraction of 

the lethal condition increases with time in proportion to water concentration and decreases with 

time in proportion to itself.  

 Whether mortality can be expected for any time-series can be assessed by numerical 

integration of Equation 2.5 or by the following general integral for Equation 2.5, analogous to 

Equation 2.2 for accumulation: 

 

( )

( )

E

0

E

0

U

U E
E

1

x t k ( t x )

x t

x t k ( t x )

x t

?

kF t C( x ) e dx
LA

k / k C( x ) k e dx
LA

C( t )
LC

= − ⋅ −

=

= − ⋅ −

=

∞

⎛ ⎞= ⋅ ⋅⎜ ⎟
⎝ ⎠

= ⋅ ⋅ ⋅

= >

∫

∫  (2.6) 

This equation embodies the perspective that toxicity at any time depends on both current and 

past exposure concentrations, with the relative importance of the concentrations decreasing the 

further back they are from the time in question.  This is an intuitively reasonable concept, and 

Equation 2.6 simply provides an expression that describes this weighting.   

 Compared to Equations 2.2 and 2.4, the water concentration-based expressions of 

Equations 2.5 and 2.6 have the advantage of having just two parameters (LC∞ and kE) rather than 

three because kU and LA are not separable parameters when accumulation is not explicitly 
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addressed.  For a constant exposure water concentration, the relationship between lethal 

concentration and time-to-death (tD) is: 

 
E1 Dk t

LCLC
e− ⋅

∞=
−

 (2.7) 

which provides the form of the curve presented in Figure 2.2.  This equation uses both LC and tD 

to emphasize that, whether time-to-death is examined as a function of concentration or lethal 

concentration as a function of exposure duration, the same relationship applies. 

 Again, these equations strictly apply just to single organisms, but can be easily extended 

to groups of organisms by treating each of the two organism-level parameters as a distribution 

rather than a single value.  Thus, this model might involve four parameters consisting of means 

and standard deviations for both LC∞ and kE.  These distributional parameters can be estimated 

from standard, constant-concentration, fixed-duration toxicity tests using Equation 2.7, provided 

that mortality is monitored for a sufficient number and range of observations times and test 

concentrations to encompass an adequate range of effect levels.  Parameter estimation methods 

will be addressed in Section 2.3 and in the case studies presented in this and later reports.  Once 

these parameters are estimated, they can be used to predict effect levels for any exposure time-

series using Equation 2.5 or 2.6. 

 This toxicity model is very simplistic considering the variety of processes and 

compartments involved in the accumulation of chemical and the elicitation of toxic effects.  

However, for many organisms, chemicals, and exposure conditions of interest, this simple model 

might still be adequate for describing toxicity relationships to some acceptable approximation.  

For aquatic life criteria, even such an approximate model will provide valuable information on 

issues that are currently not well addressed.  Nonetheless, consideration should be given to when 
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and how additional complexities might be appropriate.  The following subsections will discuss 

some features that might be part of more complicated deterministic models. 

2.1.2  Damage-Repair Models 

 One simplistic assumption in the single-compartment, lethal-accumulation-threshold 

model discussed above is that an organism will die immediately upon reaching a lethal 

accumulation threshold, but survive indefinite exposures just below the threshold.  More 

realistically, once chemical is accumulated, any overt expression of toxicity involves a series of 

biochemical reactions with kinetic constraints that might affect time-to-death as much as, if not 

more than, accumulation kinetics. To address this issue, some toxicity models relate mortality to 

reaching a threshold level of biological damage rather than a threshold of chemical accumulation 

(e.g., Connolly 1987, Breck 1989, Ankley et al. 1995, Landrum et al. 2004). 

 A simple model for damage as a function of chemical accumulation is: 

 ( ) ( ) ( )D R

dD t
k A t k D t

dt
= ⋅ − ⋅  (2.8) 

where D(t) is the accumulated damage to the organism at time t, kD is a damage accrual rate 

constant, and kR is a damage repair rate constant.  Consideration of damage repair is necessary 

because otherwise damage incurred at some past time is considered to persist undiminished and 

be as important to effects as damage occurring more recently.  Without assuming such repair in 

Equation 2.8, damage would increase indefinitely even at low exposures, resulting in no lower 

limit on effect concentrations as duration increases (i.e., no threshold effects concentration).  

Such zero-threshold models might be appropriate for some applications, and would be a subset 

of the more general treatment discussed here.  An even more general treatment would be to 

assume that damage accrues only from accumulation that exceeds some threshold level; in such a 
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case, consideration of repair might be less important, but an additional parameter specifying this 

threshold accumulation would be needed. 

 If death occurs upon reaching a lethal damage threshold LD, then this model can be 

expressed in terms of the fraction of the lethal condition reached as follows: 

 

( ) ( ) ( )

( )
0

0

D
R

D

R

R

R

x t k ( t x )

x t

x t k ( t x )

x t

dF t k A t k F t
dt LD

kF t A( x ) e dx
LD

A( x ) k e dx
LA

= − ⋅ −

=

= − ⋅ −

=
∞

= ⋅ − ⋅

⎛= ⋅ ⋅⎜
⎝ ⎠

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠

∫

∫

⎞
⎟  (2.9) 

where LA4 (=LD@kR/kD) is the minimum accumulation for which the lethal damage can be 

reached at indefinite time.  To estimate values for LA4 and kR requires information on effects and 

accumulation over a range of exposure conditions, analogous to parameter estimation for the 

relationship of effects to exposure concentration described in Equations 2.5-2.7.  Toxicity can 

then be related to water concentration by combining Equation 2.9 with Equation 2.2.  However, 

this again requires considerable information on accumulation and the relationship of effects to 

accumulation, and cannot be applied to information that just relates toxicity to water 

concentration.   

 As for the lethal-accumulation-threshold model, this damage-repair model can be adapted 

to eliminate the need for explicit information on accumulation, by incorporation of the 

expression for accumulation from Equation 2.2 into Equation 2.9: 

 

( ) ( )
0

SS
R

1

R
x t k ( t x )

x t

?

BCFF t C( x ) k e dx
LA

C( t )
LC

= − ⋅ −

=
∞

∞

= ⋅ ⋅ ⋅

= >

∫
 (2.10) 
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where C( )t denotes a weighted running average of the water concentration that reflects both kE 

and kR, and the threshold lethal concentration LC4 now equals LA4/BCFSS. 

 This model can also be expressed in terms of water concentrations by combining the first-

order differential equations of Equations 2.1 and 2.9 into the second order differential equation: 

 ( ) ( ) ( ) ( )E R

E R E R

2

2

1 k k

k k k k

d F t dF t C t
F t

dt dt LC∞

+

⋅ ⋅

⎛ ⎞ ⎛ ⎞
⋅ + ⋅ + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.11) 

For a constant exposure concentration, this differential equation has the following general 

solution: 

 
( ) E R

1 2

1 2 if

k t k t

k t k t
E R

CF t P e P e
LC

CP e P t e k k k
LC

− ⋅ − ⋅

∞

− ⋅ − ⋅

∞

= ⋅ + ⋅ +

= ⋅ + ⋅ ⋅ + = =
 (2.12) 

Where P1 and P2 are integration constants depending on initial conditions. For zero accumulation 

and damage at t=0, P1=-CAkR/(kR-kE) and P2=-CAkE/(kE-kR) when kE…kR, and P1=-1 and P2=-k 

when kE=kR=k.  Substituting into Equation 2.12 the lethal condition F=1, C=LC, and t=tD, the 

relationship between lethal concentration and time-to-death for this model is: 

 
E RR E

R E E R

1

if
1

− ⋅ − ⋅

− ⋅ − ⋅

∞

∞

=
− −

− −

= =
− − ⋅ ⋅

D D

D D

k t k t

E Rk t k t
D

LCLC k ke e
k k k k

LC k k
e k t e

= k

 (2.13) 

The formulation on the second lines of Equations 2.12 and 2.13, for kE=kR, is needed not only 

when this equality is exactly true, but also when these parameters are approximately equal, 

which causes parameter estimates to become uncertain, so that equating these parameters 

improves error estimates. 
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 Although Equations 2.7 and 2.13 both involve exponential declines to a threshold lethal 

concentration, the equations represent different shapes (Figure 2.3) which can be discriminated 

with suitable data.  The solid line in Figure 2.3 denotes the single-compartment, threshold-lethal-

accumulation model of Equation 2.7 with LC4=1 

and kE=0.05.  This is the same curve as Figure 

2.2, except plotted on a log/log scale, on which 

the slope for this model at early times approaches 

-1 for all values of kE.   

 The dashed line denotes the damage-repair 

model of Equation 2.13 with LC4=1 and 

kE=kR=0.2.  These values for kE and kR were 

arbitrarily set equal in this example and their 

shared value was selected so that the average LC 

over the time range shown was approximately the 

same for the solid and dashed lines.  The 

relationship for the dashed line is much steeper than for the solid line, approaching a log-log 

slope of -2 at early times, because it combines the kinetic constraints of both accumulation and 

damage-repair.  At short exposure durations, concentrations must be especially high to cause 

both substantial chemical accumulation and quick accrual of lethal damage.  As exposure 

duration increases, the LC drops more quickly than the single-compartment, threshold-

accumulation model because damage accrual is accelerating as accumulation increases.   

Figure 2.3.  Effects of damage-repair kinetics on 
the relationship of lethal concentration to 
constant concentration exposure durations.  The 
single-compartment, threshold-lethal 
accumulation toxicity model ( ) (no 
damage/repair component), is contrasted with 
damage/repair models with kR equal to ( ) 
and ten-fold greater than ( ) kE.  
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 The dashed-dotted line denotes the model of Equation 2.13 with LC4=1, kE=0.05, and 

kR=5.  This much larger value for kR results in little shift from the solid line except at very early 

 
 23 



times, although the slope for the dash-dotted line still approaches -2 at sufficiently small times 

off the scale of this graph.  This simply indicates that very rapid damage-repair kinetics relative 

to accumulation kinetics (kRokE) will cause Equations 2.10 and 2.13 to be approximately 

equivalent to Equations 2.6 and 2.7, respectively, except at very early times.  Furthermore, if the 

accumulation kinetics are much faster than the damage-repair kinetics (kEokR), Equations 2.10 

and 2.13 also become approximately equivalent to Equations 2.6 and 2.7 except at very early 

times, with kR substituted for kE.   

 As such, Equations 2.6 and 2.7 do not just represent a toxicity model based on single-

compartment toxicokinetics and lethal-accumulation-threshold toxicodynamics.  Rather, they can 

be considered to represent a broader set of models in which the kinetic constant can represent 

any process regulating the effect of time on toxicity, not just accumulation (Connolly 1987, 

Breck 1989), or can represent the combined effect of multiple processes is this is approximately 

first-order.  Subsequent use of Equations 2.6 and 2.7 will thus use a kinetic constant k without a 

subscript, indicating that the nature of the kinetic process(es) contributing to k are not necessarily 

known, and do not actually need to be known if this single constant provides a reasonable 

approximation for the toxicity relationships of interest.  Similarly, Equations 2.10 and 2.11 can 

be more broadly interpreted as describing toxicity for which the kinetics can be reasonably 

approximated by two sequential processes, which do not need to be completely characterized for 

this model to be useful. 

2.1.3 Multiple Mechanisms of Action 

 Another way in which the relationship of mortality to exposure can be more complicated 

than the simple model illustrated in Figure 2.2 is the existence of multiple mechanisms by which 

toxicity is elicited.  Toxicants can act on multiple biochemical systems, and these actions can 
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differ with regard to both toxicokinetics and toxicodynamics, so that one mechanism might be 

most important for determining lethal concentrations within certain ranges of concentration and 

time, whereas other mechanisms would be important for other circumstances. 

 To extend the model described in Section 2.1.1 to two mechanisms simply requires 

applying Equations 2.5 and 2.6 to each mechanism as follows:     
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∫

∫

 (2.14) 

where A and B refer to the two mechanisms, and, per previous discussion, k no longer has the 

subscript denoting elimination because it is being treated as a more general kinetic coefficient 

encompassing the entire toxicity process. 

 FA(t) and FB(t) must be combined to specify how the two mechanisms jointly contribute 

to the overall toxic condition F(t).  One possibility for this is that the two mechanisms are 

completely independent, so that death occurs when either FA(t) and FB(t) exceeds 1.0, and thus 

F(t) will be equal to the larger of these two fractions.  For constant concentration toxicity tests, 

the relationship of lethal concentration to time-of-death would therefore be: 

 
A B

min
1 1Dk t k t

,A ,BLC LC
LC ,

e e− ⋅ − ⋅
∞ ∞⎛

= ⎜ − −⎝ ⎠D

⎞
⎟  (2.15) 
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Another possibility is that the two mechanisms additively contribute to damage, so that F(t) is 

the sum of FA(t) and FB(t).  For a constant concentration toxicity test, the following relationship 

would therefore apply: 

 
A B

1
1 1− ⋅ −

∞∞

=
− −

+
⋅D Dk t k t

,B,A

LC
e e

LC LC

 (2.16) 

 Figure 2.4 illustrates how such models 

would deviate from the simple model of Equation 

2.7.  The bold solid line in Figure 2.4 again 

denotes the model of Equation 2.7 with LC4=1 

and k=0.05.  For the two-mechanism models, it is 

assumed that LC4,B is 4-fold higher than LC4,A 

and that kB is 40-fold faster than kA, and all 

parameters are scaled to produce LC4=1 and 

approximately the same average LC as the solid 

line.  The dashed line denotes the model of 

Equation 2.15, for which the mechanisms are 

independent.  The portion of the dashed line below the solid line indicates how mechanism B 

results in lower lethal concentrations at short durations because of its faster kinetics.  However, 

the high LC4,B results in the dashed line crossing the solid line and causing higher LCs until 

intersecting the relationship for mechanism A, which controls toxicity at longer durations 

because of the low LC4,A.  The dash-dotted line denotes the model of Equation 2.16, for which 

the mechanisms are additive.  The assumed additivity results in a gradual transition between the 

Figure 2.4.  Effects of multiple mechanisms of 
toxicity on the relationship of lethal 
concentration to time-to-death.  A single-
mechanism, single-compartment, threshold-
lethal accumulation toxicity model ( ), is 
contrasted with two-mechanism models with 
independent ( ) and additive ( ) 
mechanisms. 
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two mechanisms, resulting in a smoother curve, but still with two phases reflecting the different 

kinetics of the two mechanisms. 

2.1.4 Multicompartment Toxicokinetics 

 The first-order, single-compartment toxicokinetics model described by Equations 2.1 and 

2.2 is a highly simplified approximation for chemical accumulation, which might or might not be 

an adequate approximation in a toxicity model for a specific chemical, organism, endpoint, and 

exposure scenario.  An organism consists of various morphological compartments that 

accumulate and process chemicals at different rates, such that the concentrations in each 

department will have different time-dependencies.  Such differences might be large enough to be 

important for the time-dependence of toxicity.  Physiologically-based toxicokinetic (PBTK) 

models have been developed to describe the accumulation and speciation of chemicals in various 

compartments in aquatic organisms (e.g., Nichols et al. 1990), and can be a part of accumulation-

based toxicity models.  However, PBTK models require considerable physiological, 

morphological, and chemical partitioning information for parameterization, and their application 

to toxicity predictions requires relating effects to accumulation in a specific compartment.  Their 

use in aquatic life criteria will be for specific circumstances and require special considerations, 

and they will not be addressed in this report. 

 However, to some approximation, multicompartment kinetics can also be addressed more 

empirically and more simply by extending Equation 2.1 to describe multiple compartments, 

which is well-established practice in toxicokinetics and pharmacokinetics research (e.g., Gibaldi 

and Perrier 1982).  The simplest such modification is to treat an organism as consisting of two 

compartments, with first-order chemical exchange between the external environment 

(compartment 0) and compartment 1 and between compartments 1 and 2: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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dM t
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dM t
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= ⋅ − ⋅ − ⋅ + ⋅

= ⋅ − ⋅

 (2.17) 

where Mi(t) is the mass of chemical in compartment i and kij is a transfer rate coefficient from 

compartment i to j (e.g., k01 is the coefficient for transfer from the external compartment to 

compartment 1). 

 For C constant with time, Equation 2.17 can be integrated to produce: 
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where W is the organism weight and " and $ are functions of k10, k12, and k21 such that "+$= 

k10+k12+k21 and "@$ = k10@k21 (Gibaldi and Perrier 1982).  With this empirical approach, the 

identity of the compartments is typically not completely characterized, so that M1(t) and M2(t) 

are not directly measured.  Rather, Equation 2.18 (or comparable equations for other exposure 

scenarios) is used to analyze A(t) from accumulation and elimination experiments to estimate the 

four model parameters (transfer rate coefficients), which in turn can be used to estimate M1(t) 

and M2(t). 

 To apply such a multicompartment toxicokinetics model to toxicity assessments would 

require information on the relationship of effects to accumulation that would allow specification 

of the lethal accumulation threshold in terms of either or both compartments.  While such an 

application is plausible, and desirable when appropriate data are available, it would not address 

typical toxicity evaluations based just on water concentrations.  As for the single compartment 
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model, these multicompartment models can be applied to interpretations of water-based toxicity 

evaluations without needing to quantify accumulation or the relationship of effects to 

accumulation, provided that the relative contributions of the two compartments to the lethal 

condition can be inferred.  For a lethal accumulation threshold in compartment 1, the relationship 

of lethal concentration to time-to-death for a constant exposure concentration is:  

 
( )10 101 D Dk kt

LCLC
e eβ αα

β α α β
− −− ⋅ − ⋅
− −

∞=
− ⋅ − ⋅ tβ

 (2.19) 

For a lethal accumulation threshold in compartment 2, this relationship is: 
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− ⋅ − ⋅ tβ

 (2.20) 

 Equations 2.19 and 2.20 provide shapes for the relationship of lethal concentrations to 

time that are different from the single-compartment toxicokinetics model of Equation 2.7 and 

from each other (Figure 2.5).  The solid line in 

Figure 2.5 again denotes the model of Equation 

2.7 with LC4=1 and kE=0.05.  The dashed line 

denotes the model of Equation 2.20 (lethal 

accumulation threshold in compartment 2) with 

LC4=1, k10=0.2, k12=0.02, and k21=0.2.  The 

relative values for these parameters represent a 

situation for which the kinetics of exchange 

between the water and compartment 1 and 

between compartments 1 and 2 both are important 

to the kinetics of mortality in the time frame of 

interest, and the absolute values of these parameters are again scaled so that the average LC is 

Figure 2.5.  Effects of multicompartment 
kinetics on the relationship of lethal 
concentration to constant concentration exposure 
duration.  A single-compartment, threshold-
lethal accumulation toxicity model ( ), is 
contrasted with two-compartment models with 
lethal accumulation threshold in inner ( ) 
and outer ( ) compartment. 
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similar for the different lines.  This produces a biexponential decline similar to the damage/repair 

model depicted in Figure 2.3; in fact, the model of Equation 2.20 cannot be distinguished from 

that of Equation 2.13, which reflects the fact that they both represent two sequential processes 

leading to toxicity (single-compartment accumulation followed by accumulation of damage, 

versus accumulation in an outer compartment followed by accumulation into an inner 

compartment).  This reemphasizes the merits, when applying these models to water 

concentration-based toxicity data, of not attributing specific mechanisms to the processes causing 

toxicity and to recognize that various mechanisms might be responsible for data relationships. 

 In contrast, the model of 2.19 (lethal accumulation threshold in compartment 1) provides 

a two-phase relationship shown by the dash-dotted line in Figure 2.5, for which LC4=1, k10=0.2, 

k12=0.5, and k12=0.5 .  At early times, the LC decreases with time because accumulation in 

compartment 1 is increasing and the influence of uptake into compartment 2 is not yet 

significant.  As time increases, the decrease in LC slows down because uptake into compartment 

1 is largely offset by loss of chemical to compartment 2.  At even greater times, compartments 1 

and 2 approach steady-state with respect to each other, so that more of the uptake from water is 

retained in compartment 1, and the log-log slope of the LC thus becomes steeper again, until the 

asymptotic LC is approached.  This biphasic relationship is similar to the two-mechanism model 

of Figure 2.4 and Equation 2.16, and, in practice, distinguishing these models would be difficult, 

and probably not important because they would produce similar results.  However, Equation 2.19 

would be more difficult and uncertain to parameterize because it does include one more 

parameter than Equation 2.16.  

 As for the models in Sections 2.1.1, 2.1.2, and 2.13, the parameters in Equations 2.19 or 

2.20 can be estimated from the results of constant concentration toxicity tests provided that the 
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multicompartment kinetics are important enough to exert appreciable effects over the time-frame 

of the data.  For the model represented by Equation 2.19, the parameters so estimated can be 

used to derive the kinetic constants of Equation 2.17 and 2.18, and then used to calculate toxicity 

under time-variable exposures.  However, this is not true for the model represented by Equation 

2.20, for which parameters estimated from constant concentration toxicity tests are not sufficient 

to uniquely specify all the kinetic constants, thus requiring additional assumptions or information 

to address time-variable exposures.  Therefore, because the multiple compartment of Equations 

2.19 and 2.20 provide relationships that (a) are not substantially different from the models of 

Equations 2.13 and 2.16 and (b) present more difficulties in parameterization and predictions of 

fluctuating exposure effects, they will not be used further in the efforts described in this series of 

reports.  

2.2 Stochastic Models 

2.2.1 Distribution of Time-to-Death and Hazard Rate 

 The models in section 2.1 are referred to as deterministic because they are premised on 

the assumption that any individual organism will either die or not die for any specified exposure 

conditions based on a fixed relationship for that individual.  Variation between organisms arises 

from them having different values for the model parameters.  Even if each parameter varies 

among different individuals in accordance with a statistical distribution, the response of any 

individual is still deterministic.  An alternative approach for modeling mortality has its origin in 

the statistical analyses of time-to-event such as component failure, life expectancy, etc.  Such 

statistical tools have been used in environmental risk assessment and toxicology for describing 

survival times under toxic chemical exposures (e.g., Dixon and Newman 1991, Newman 1995, 

Crane et al. 2002), and these sources provide the basis for the discussion here.   
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 A basic variable of interest in an analysis of survival versus time is the "survivor 

function" S, an expression of the statistical distribution of the survival times of the organisms: 

  (2.21) ( )  Probability of  test organism survival to time  when exposed to concentration t CS t ,C =

For a stochastic approach, the survivor function is a cumulative function of the "hazard rate" 

h(t,C), the probability of death per unit time per surviving individual: 

 ( ) ( )
( )1 dS t ,C

h t ,C
S t ,C dt

= − ⋅  (2.22) 

The hazard rate represents a stochastic perspective because it specifies a probability that an 

organism will die in a given time interval, not a certainty based on the specifics of the exposure 

and the model parameters for the organism.  Different organisms will die at different times, or 

not at all, based partly on random chance, not because of inherent differences between the 

organisms (although the hazard rates could be specified to depend on organism attributes if 

appropriate).   The hazard rate also provides an effective basis for addressing time-variable 

exposures because it specifies the instantaneous risk to survivors at any time and therefore can be 

used to integrate this variability to estimate the survivor function, by the relationship:  

  (2.23) ( ) ( )0
( )

( )
t
h t ,C t dt

S t ,C t e
−

= ∫

2.2.2 Specifying the Hazard Rate 

 If the hazard rate is constant with time for specific exposure conditions, the survivor 

function would have the simple exponential form te α− , analogous to radioactive decay.  

However, the survivor function is usually not so simple because, even for a constant exposure 

concentration, the hazard rate can change with time.  Surviving organisms might be more likely 

to succumb upon longer exposure because of increasing chemical accumulation, cumulative 

damage, etc., or be less likely to succumb because of compensatory mechanisms, greater 
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resistance in survivors, etc.  The dependence of hazard rate on time must therefore be addressed.  

For constant exposure tests, this issue has been addressed by specifying a statistical distribution 

for the survivor function (i.e., a statistical distribution for survival times), which can then be 

related to the hazard rate using Equations 2.22.   

 The relationship of hazard rate to exposure concentration can be determined based on the 

differences in survivor functions and hazard rates across different exposures.  The combined 

effect of time and exposure concentration (and other factors such as organism attributes or 

physicochemical test conditions) sometimes has been described using a "proportional hazards" 

model:  

 ( ) ( ) ( )0
g Ch t ,C e h t= ⋅  (2.24) 

which multiplies a baseline (control) hazard rate h0(t), which incorporates the basic form for the 

time-dependence of hazard, by a factor ( )g Ce that is a function of the chemical exposure 

concentration.  Another model commonly used is the "accelerated failure time" model, 

 ( ) ( )Dln t g C ξ= +  (2.25) 

where the function g(C) describes the relationship of the median log time-to-death to exposure 

concentration and the random variable (>) describes the variability of log time-to-death around 

the median.  This accelerated failure time model specifies how the survivor function distribution 

would vary with exposure concentration, so Equation 2.22 can be used to specify how the hazard 

rate varies with exposure. 

 Although Equations 2.24 and 2.25 incorporate an effect of time and thus might appear to 

be applicable to the time-variable calculations indicated in Equation 2.23, this actually is not the 

case.  The basic difficulty regarding this is that the effect of time in Equations 2.24 and 2.25 is 

not some independent function of time, but depends on the exposure history and thus applies 
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only to the constant exposure in question.  If the concentration changes with time, these 

equations do not reflect cumulative effects that occurred from the old concentration(s), but rather 

cumulative effects that would have occurred if the exposure had been at the new concentration 

all along.  Equations 2.24 and 2.25 can be applied to time-variable exposures only if the hazard 

rate is time-invariant, which implies an instantaneous achievement of the hazard for any 

concentration.  For any case in which hazard is time-dependent at a constant concentration, 

Equations 2.24 and 2.25 do not conceptually address the effects of time-variable concentrations, 

so that additional model specifications regarding the effect of time on hazard are needed.   

 One approach for applying the hazard rate concept to time-variable exposures was 

developed by Kooijman and coworkers (e.g., Kooijman and Bedaux 1996a, 1996b).  Their model 

is based on chemical accumulation, using the same first-order, single-compartment kinetics 

model discussed in Section 2.1.1 (Equations 2.1 to 2.4).  The hazard rate is assumed to be 

linearly proportional to the degree to which chemical accumulation exceeds a threshold 

accumulation value, and to change instantaneously as accumulation changes: 

 ( ) ( )( )( )00h t max ,d A t A= ⋅ −  (2.26) 

where A(t) is measured or estimated as in Equations 2.2 and 2.3, d is a proportionality constant 

called the "killing rate" (Kooijman and Bedaux 1996a, 1996b), and A0 is an accumulation 

threshold for effects.  It is thus the kinetics of accumulation that produce the time-variability of 

the hazard rate for constant exposures and allow extrapolation to time-variable exposures. 

 This model has four parameters [kE and BCFSS (or kU and kE) for the toxicokinetics 

(Equations 2.1 to 2.3) and A0 and d for the toxicodynamics] if accumulation and the relationship 

of effect levels to accumulation are explicitly addressed.  As was the case for the deterministic 

model, this stochastic model can also be formulated to be referenced to water concentrations 
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without explicitly including accumulation.  When the water concentration (C) is constant, 

 ( ) ( )( )E
00 (1 )k th t max ,d C e C− ⋅′= ⋅ ⋅ − −  (2.27) 

where C0 is a threshold water concentration for effects (=A0/BCFSS) and d' (=d/BCFSS) is a 

killing rate referenced to water concentrations rather than accumulation.  For this formulation, 

the three parameters are kE, C0, and d', one fewer than the corresponding deterministic model of 

Equation 2.6.  For any arbitrary time-series C(t), the hazard rate would be: 

 ( ) ( )( )( )00h t max ,d C t C′= ⋅ −  (2.28) 

where ( )C t  is computed as in Equation 2.6. 

 Unlike the deterministic model examples 

shown on Figures 2.2 to 2.5, an individual 

organism does not have a fixed relationship for 

lethal concentration versus time using this 

stochastic model.  However, a model comparison 

similar to those in Figures 2.3 to 2.5 can be made 

based on LCP, the concentration lethal to p percent 

of a group of organisms.  In Figure 2.6, the bold 

solid lines are LCPs for the single-compartment, 

lethal-accumulation-threshold deterministic model 

(Equations 2.7), with median LC4=1 and median 

k=0.05, and both parameters log-normally 

distribution with a log10 standard deviation of 0.2.  

This line was computed based on Monte Carlo 
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Figure 2.6.  Comparison of LC50 and LC10  
versus time of the single-compartment, 
threshold-accumulation deterministic model 
( )  with median kE=0.05 and median 
LC4=1 ( ) to stochastic models with kE and 
LC4 equal to these median values, but with 
either a slow ( ) or fast ( ) killing rate. 
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simulation, and for the LC50 is very close, but not identical, to the line on Figures 2.3 to 2.5 for 

the LC of an individual organism with LC4=1 and k=0.05.  The dashed lines are the LCP for the 

stochastic model of equation 2.28, integrated to predict survival using equation 2.23, with C0=1, 

kE=0.05, and a slow killing rate, d'=1.  The dash-dotted lines in Figure 2.6 represents the 

stochastic model when d'=100.   

 For the LC50s, the stochastic model with the slow killing rate shows a steeper relationship 

than the simple deterministic model, similar to the damage/repair model of Equation 2.13 (Figure 

2.3) or the two-compartment model of Equation 2.20 (Figure 2.4).  This is understandable 

because, like these other models, this stochastic model includes two kinetic processes – the rate 

of accumulation and the rate of mortality for a given level accumulation.  The similarity of the 

LC50s for the deterministic model and the stochastic model with the fast killing rate simply 

demonstrates that this stochastic model is roughly equivalent to the single-compartment, lethal-

accumulation-threshold deterministic model when the (deterministic) toxicokinetics are much 

slower than the (stochastic) toxicodynamics.   Therefore, based on LC50s, this stochastic model 

would not be readily distinguishable from deterministic models discussed previously.   

 However, some notable differences between the deterministic and stochastic models are 

evident when other LCPs are examined.  For the stochastic model, LC10s are lower than the LC50s 

at early times, but by a limited extent that depends on the killing rate.  At longer exposure 

durations, the LC10s approach the same value as the LC50s because this stochastic model assumes 

that all the organisms have the same sensitivity, so that their effect concentrations become the 

same at durations long enough that stochastic differences have diminished.  In contrast, for the 

deterministic model, LC10s can be lower than the LC50s both at early and later times, and the 

extent of this difference is independently determined by the standard deviations of the parameter 
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distributions.  Therefore, the variation of LCPs at long versus short durations and the variation of 

LCPs at short duration relative to apparent killing rates can provide a basis for determining 

whether a deterministic or stochastic model best describes a data set.  Of course, the stochastic 

model could be expanded to include differences among organisms (e.g., C0 could be a 

distribution that varies among organisms, rather than a constant), but this would reduce the 

importance of the stochasticity and increase the number of parameters. 

 As with the deterministic model, this stochastic model also can be extended to address 

multicompartment kinetics, multiple mechanisms, and damage-repair, and could also include 

different concepts regarding the relationship of 

hazard rate to accumulation.  A simple 

modification could be to repeat Equation 2.27 for 

two different mechanisms – perhaps one with 

high k, d', and C0, so that organisms die quickly 

but only at high exposure concentrations, whereas 

another mechanism could have low k, d', and C0, 

so that organisms continue to die at low exposures 

at extended durations.  Figure 2.7 illustrates this 

possibility, and shows how the stochastic model can produce results similar to the multiple-

mechanism deterministic models in Figure 2.4.   

Figure 2.7.  LC50 vs time relationship for 
stochastic model with multiple mechanisms.  
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2.3 Model Parameterization and Selection 

2.3.1 Model Parameterization 

 This section will discuss general principles and approaches for parameterizing either the 

deterministic or stochastic binary endpoint models.  This general information applies to all the 
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case studies that will be examined, and further details will be provided as needed in the specific 

sections on each study. 

 For mortality in any toxicity test, the fundamental observation is usually how many 

organisms subject to an experimental treatment die between one observation time and the next.  

A specific time-to-death for an individual organism is rarely determined; rather, it is only known 

that death occurred within the time interval between observations.  Similarly, the concentration 

needed to kill an individual organism at a specific exposure duration is also not measured; rather, 

it is only known that this lethal concentration is between two treatment concentrations.  Such a 

data set can be perceived as a matrix of treatment concentrations and observation intervals, with 

each element of the matrix containing the number of organisms dying during a specific interval 

in a specific treatment.  If J is the number of experiment treatments (concentrations) and I is the 

number of observation times, let N be an I+1 by J matrix for which the element Ni,j (i#I) is the 

observed number of deaths in the jth treatment between the ith-1 and ith observation time, and 

NI+1,j is the observed number of surviving organisms in the jth treatment at the end of the test.  

This includes all the mortality observations made during the test, and each such observation is 

statistically independent.   

 The toxicity models discussed here are well suited to analysis of such data sets, because 

they can predict an expected probability of death (or survival) Pi,j for each element of such a 

matrix.  For a constant concentration exposure starting at t=0, with observation times ti, and with 

treatment concentrations Cj, the stochastic mortality model of Equation 2.27 provides estimates 

for Pi,j  of: 
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 For the deterministic mortality model described by Equation 2.7, an individual organism 

will still be alive for a given Cj and t if its LC∞ is greater than Cj@(1-e-k@t).  Thus, for a group of 

organisms for which f(k) and f(LC∞) are the density functions for the statistical distributions of k 

and LC∞: 
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where max and min refer to the maximum and minimum variable values in the distributions of k 

and LC4.   

 Whichever type of model is used, estimates of the model parameters can be obtained 

using computerized search algorithms to find the parameter values which maximize the 

likelihood L of the observed mortality observations N as a function of the parameter set 1 

(Breiman 1973): 

  (2.31) ( )( ) (
1 1

ln 1
J I+1

i , j i , j
j i

ln L | N P
= =

Θ = ⋅ −∑∑N )

For the stochastic model of Equation 2.29, the parameter set 1 is C0, kE, and d'.  For the 

deterministic model of Equation 2.30, the parameter set 1 would be the parameters for f(k) and 
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f(LC∞), which will typically be a mean and standard deviation for each distribution. 

 For the case studies presented in this series of reports, custom software developed with 

Intel Visual Fortran (Version 9.1, Intel Corporation) using IMSL library (Version 5.0, Visual 

Numerics Incorporated) routines were used for this likelihood maximization and for other data 

analysis.  The search algorithm used was the Box Complex method (Box 1965).  However, other 

commercial mathematical and statistical software and other algorithms are also suitable for such 

analyses.   More computational details are provided as needed in the sections for each case study. 

 For the stochastic model, survivor functions for any time-variable exposure scenario of 

interest can be predicted using Equations 2.23.  For the deterministic model, predictions are best 

conducted by Monte Carlo analysis.  In such an analysis, a large number of organism-level 

parameter sets (e.g., LC∞, k) would be randomly generated from the distributions [e.g., f(k) and 

f(LC∞)] defined by the maximum likelihood parameter estimates.  The model would then be 

applied to the exposure scenario of interest using each of these parameter sets to define if and 

when each organism was expected to die.  These mortality estimates then would be aggregated to 

estimate the survivor function or other statistics of interest (e.g., LC50s at a specified time).  

 Model uncertainty can be addressed in various ways.  Standard errors for the maximum-

likelihood parameter values can be obtained from the parameter variance/covariance matrix 

estimated by inverting the information matrix for the maximum likelihood analysis (Breiman 

1973).  However, such standard errors generally underestimate actual uncertainties, especially 

for pooled analyses of multiple data sets, because structural model error and variation of 

parameters among data sets is not addressed. When data from multiple toxicity tests is available, 

an improved assessment of parameter uncertainty can be obtained by estimating separate 

parameters for each test, the variation of parameters among tests including both within- and 
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between-test sources of error.  Another alternative is to conduct a pooled analysis of the data 

from all the tests, but to include between-test variability as part of the model and estimation 

procedure.  For example, for the deterministic model, it might be assumed that the means for the 

distributions f(k) and f(LC∞) for individual tests are in turn distributed with some overall mean 

and variance.  Case studies later in this series of reports will illustrate how such a broader 

analysis might be conducted.  

 When appropriate estimates of model parameter uncertainty are available, the 

uncertainties for model predictions can be obtained by Monte Carlo analysis in which a large 

number of sets of parameter values are randomly generated from the parameter uncertainty 

distributions.  For each of these sets of randomly-generated parameter values, the model 

calculations described previously would be conducted, providing a distribution of model results 

for any statistic of interest, from which confidence limits can be obtained.  For example, for an 

LC50 at a specified time, if this process produced 999 estimates, the 25th highest value and 25th 

lowest value would provide approximate 95% confidence limits.  

2.3.2 Model Selection 

 G.E.P. Box's dictum that "all models are wrong, some models are useful" is a useful 

perspective in selecting a toxicity model for use in aquatic life criteria.  It must be recognized 

that any model provides just an approximation to the toxicity relationships of interest, and that 

the selected model need not be perfect to serve some need.  Furthermore, the model need not 

even be the most complete and accurate available; rather, the most appropriate model would be 

one that provides acceptable performance with the lowest complexity and data requirements.  

The basic need of aquatic life criteria is for toxicity models which quantify the level of effect as a 

function of exposure concentration and duration, including exposures which have a certain 
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degree of time-variability.  Any such quantification represents a fundamental improvement in 

defining the risks associated with criteria compared to current practice, and there will be a need 

to define specific performance criteria to determine model acceptability.  What is the range of 

exposure time-series that the model will address?  What uncertainty measures are desired and 

what level of uncertainty is adequate enough that more complex models are not needed?  What is 

the minimal amount of data upon which models must be parameterized for a given species, and 

will this require that certain model parameters be based on default values derived from analyses 

on other species and/or chemicals?  This report will not specify such requirements, but will 

present approaches and analyses that will assist in their development and application. 

 In choosing models for consideration, it is useful to examine how mortality varies with 

exposure concentration and time (e.g., Figures 2.3 to 2.7), in order to determine what properties 

the model should have.  To serve this purpose, the case studies will include calculation of  LCps 

and LTPs (the time to kill a percentage p of the organisms at a specified concentration).  These 

LCPs or LTPs can be used in simple figures and tables to illustrate data trends and to guide model 

formulation more effectively than the matrix of observed deaths within each time interval and 

treatment.  However, LCPs at different times are not statistically independent and do not 

represent the fundamental data upon which parameter estimation and model fit must be assessed.  

All parameter estimation will be done directly on the basic mortality observation matrix, using 

LCPs or LTPs only for exploratory data analysis or to illustrate model fit. 

 Once models are selected for consideration and are parameterized with the data, their 

relative goodness of fit will be based on the computed likelihood (L) using the Akaike 

Information Criterion (AIC):   

 ( )AIC 2 2 lnpn= ⋅ − ⋅ L  (2.32) 
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where np is the number of model parameters and a lower AIC indicates a better model.  This 

formula recognizes that higher values for the likelihood statistic indicate better model fit, and 

result in a lower AIC.  However, models with more parameters (degrees of freedom) would be 

expected to have a better likelihood statistic, so the AIC is increased by the number of 

parameters to compensate for the effect of np.   Therefore, a model with the lowest AIC would be 

considered superior, regardless of the number of parameters.   

 However, the AIC is not informative regarding the magnitude of deviations of model 

predictions from observations or the amount of data variability that is accounted for by the 

model, such as the R2 statistic (the fraction of the variance of the dependent variable explained 

by the regression) commonly used in regression analysis.  Statistics such as R2 also can be used 

to illustrate how well data or statistics derived from the data are described by a model, although 

using R2 to address statistics such as LCPs at different times must be done with recognition of the 

lack of statistical independence among observations.  Various other measures of the deviation of 

observed and predicted LCPs or mortality levels (e.g., mean deviation, mean of the absolute 

deviations, standard deviation of the difference) can also be used to describe model uncertainty. 

 However, whatever measures of fit are used, they should not be the sole basis for 

selecting a toxicity model for use in aquatic life criteria.  A simpler, but less accurate, model 

might be preferred if the level of accuracy still satisfies specified performance goals for exposure 

regimes of interst.  In general, model selection will involve various statistical and nonstatistical 

factors, and must be conducted in an ad hoc fashion. 
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Section 3.  Short-Term Copper Lethality To Juvenile Fathead Minnows 

3.1 Description of Study and Exploratory Data Analysis 

 Lindberg and Yurk (1982, 1983a, 1983b) conducted a series of tests on the toxicity of 

copper to juvenile (ca. 30-day-old) fathead minnows that consisted of (a) 31 constant-exposure 

toxicity tests with durations ranging from 2.5 h to 192 h (including observations of mortality 

after termination of exposure when exposure duration was #24 h) and (b) 6 pulsed-exposure 

toxicity tests with pulse durations ranging from 2.5 to 12 h and pulse intervals ranging from 8 to 

24 h.  Five of the constant-exposure tests showed exposure concentrations which drifted with 

time or were otherwise uncertain, and will not be used here.  The rest of this data set will be used 

here to demonstrate the use of constant-exposure tests for toxicity model parameterization and 

selection, to test the validity of model assumptions, and to evaluate model applicability to time-

variable exposures.   

 Exploratory data analysis of the constant-exposure tests showed three attributes important 

to model selection.   

(1)  For each test, LT50s were estimated for each concentration at which mortality 
exceeded 40% by the end of the exposure.  All the LT50s so computed are plotted versus 
concentration on Figure 3.1A, and demonstrate a strong relationship to water 
concentration (CW) similar to that depicted in Figure 2-2.  The solid line denotes a 
regression analysis for the relationship described in Equation 2-7 (conducted using 
Sigmaplot, version 9.01, SPSS, Chicago, IL, the graphics software used to create this 
figure) to illustrate that these data do approximately follow this relationship. 

(2)  However, closer inspection of the data shows certain deviations from the simple 
exponential relationship.  This is more clear in the log/log plot of Figure 3.1B of the same 
LT50s.  For times <24 h, the LT50s generally fall below the fitted regression line and, for 
times between 24 and 96 h, they generally fall above the line.  These deviations are even 
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more clear in Figure 3.1C, which shows 
LC50s calculated from just several tests for 
which LC50s could be calculated for times 
from 6 h or less to at least 96 h.  In contrast 
to a smooth single-phase exponential decline, 
Figure 3.1C suggests two phases to the 
response curve – a rapid mortality that is 
starting to level off at about 300 :g/L by 24 
h, followed by a second phase in which LC50s 
drop again to level off near 100 :g/L.  This is 
the sort of behavior exhibited by the models 
presented earlier which either have two 
mechanisms (Figures 2-4, 2-7) or two-
compartment kinetics in which toxicity 
reflects accumulation in an outer 
compartment (Figure 2-5). 

Figure 3.1  Panels A, B: Exposure concentration 
versus LT50 (M ) for pooled tests of acute copper 
lethality to juvenile fathead minnows, with fitted 
exponential relationship ( ).  Panel C: LC50 
versus time for selected tests (MO?>‚Ú).  
Data not adjusted for delayed mortality. 
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(3)  Several of the constant-exposure tests in 
this study had durations #24 h, with 
monitoring of mortality after the cessation of 
exposure.  Figure 3.2 displays LC50s plotted 
at the exposure duration, but either calculated 
(a) based just on mortality that had occurred 
by the cessation of exposure (filled symbols, 
arrows denoting LC50s greater than the 
indicated values) or (b) based also on any 
mortality that occurred after the exposure 
(open symbols).  Virtually no delayed 
mortality was present for 24 h exposures and 
the difference between LC50s including and 
excluding delayed mortality was less than a 
factor of 1.1 for 12 h exposures; however, 
this difference was about a factor of 1.25 for 
8 h exposures, a factor of at least 1.4 for 4 h 
exposures, and even greater for 2.5 h 
exposures.  The smaller LC50s when delayed 
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Figure 3.2  LC50s at the end of short-duration 
toxicity tests based on mortality during exposure
(M) or on mortality both during and after 
exposure (!). 
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mortality is included further accentuate the two-phase behavior noted in Figure 3.1.  
Deterministic models that have both an accumulation and a damage-repair component, or 
that have effects related to accumulation in an internal compartment, could account for 
mortality persisting beyond the end of exposure.  Such models are also suggested by the 
log/log slopes being greater than 1.0 at short durations for the solid symbols in Figure 3.2 
(although the indeterminate LC50s make the exact slopes uncertain).  Stochastic models in 
which the hazard rate depends on past exposure (e.g., being a function of accumulation 
that persists for some time after exposure stops) could also explain the delayed mortality 
and steeper slopes. 

 These data therefore suggest a complicated toxicity relationship with more than one of 

the mechanistic possibilities discussed in Section 2.  This therefore provides a good case study 

for not only discussing how models can be formulated and parameterized, but also for addressing 

the level of model complexity that can be justified and supported by constant concentration 

toxicity tests.  Equally important, this is a good case study for exploring whether certain model 

complexities, even if they are supported by calibration data sets, are actually important for 

making model predictions for the time-variable exposures to which aquatic life criteria are 

applied. 

3.2 Evaluation of Deterministic Models 

3.2.1 Models Evaluated 

 Based on the exploratory data analyses discussed in Section 3.1, three deterministic 

models were evaluated for this data set.   

(1) Model D1 was the one-compartment, lethal-accumulation-threshold model of 
Equation 2.5-2.7.  This is the baseline model that might typically be used in the absence 
of a demonstrated need for more complex models.  The evaluation here will emphasize 
how much error is introduced by using such a model and not addressing the complexities 
of the toxicity relationship discussed in Section 3.1.  The organism-level parameters for 
this model are designated as LC4,A and kA, to denote a single-mechanism "A" with one 
kinetic-constant and a threshold lethal accumulation. 
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(2) Model D2 was the two-mechanism, independent-action model of Equations 2.14-2.15.  
This model was included because it exhibits biphasic behavior (Figure 2-4) similar to that 
observed in the data (Figure 3.1).  The organism-level parameters for this model are 
designated LC4,A, LC4,B , kA, and kB, "B" denoting the mechanism for the faster toxicity 
phase and "A" the slower phase.   

(3) Model D2X extended Model D2 by applying the damage/repair model of Equations 
2.10 and 2.13 to the fast toxicity phase, to address the delayed mortality associated with 
this phase (Figure 3.2).  The organism-level parameters for this model are designated 
LC4,A, LC4,B, kA, kB1, and kB2.  The two kinetic constants for the fast phase are 
differentiated by numbers to emphasize that, although one parameter might reflect 
chemical accumulation and the other damage/repair, it is uncertain what kinetic processes 
are associated with each constant.  When an analysis indicated that kB1 and kB2 had the 
same or very similar values, the analysis was redone with the assumption that these 
values were the same, as described in Equation 2.12 and 2.13. 

 The multicompartment models of Section 2.1.4 were not part of this evaluation.  As noted 

earlier, these models produce relationships that are not readily distinguishable from those of the 

multiple-mechanism and damage/repair models.  In fact, as also noted earlier, the models used 

here should not be treated as definitely describing specific toxicity processes, but as general 

kinetic formulations that provide useful approximations to a variety of possible processes.  

Additionally, it is not possible to conceptually reconcile the toxicity relationships illustrated in 

Figures 3.1 and 3.2 with the two-compartment models discussed in Section 2.1.4.  Because the 

first phase of toxicity involves delayed mortality and a steep log/log slope at earlier times, it 

must reflect toxicity occurring due to accumulation in an inner compartment (Equation 2.20), but 

the biphasic behavior would then require a third compartment as a sink for the inner 

compartment or as an additional site of toxicity.  This creates complexities which are not needed 

to address the behaviors in Figures 3.1 and 3.2, and adds to the difficulties regarding 

parameterization and prediction already noted in Section 2.1.4 for the multicompartment models. 
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3.2.2 Model Parameter Distributions 

 The default assumption regarding the variation of organism-level parameters among 

different organisms was that they were log-triangular and independently distributed.  Thus, 

fitting the models to toxicity data required estimating a mean and standard deviation for each 

organismal-level parameter, which would require four distributional parameters for Model D1, 

eight for Models D2, and ten for Model D2X (eight if the two kinetic constants for the fast 

toxicity phase are equal to each other).  Two issues were addressed regarding this default 

assumption: 

(1) Because estimation of a large number of parameters might be problematic for 
many toxicity data sets, some analyses using Models D2 and D2X assumed that 
the distributions for the organism-level parameters shared the same relative 
standard deviation, resulting in fewer distributional parameters and allowing an 
evaluation of whether individual standard deviations were important for model 
performance.   

(2) Consideration was also given to the uncertainty that might be introduced by 
assuming independence among the organism-level parameters, when, in fact, 
there might be some correlation among these parameters (i.e., an organism with a 
higher-than-average LC4 might tend to have higher-than-average k, or vice-versa).  
Fully evaluating the extent and nature of the various correlations would be very 
difficult, if not infeasible, but some analyses with Models D1 and D2 assumed a 
correlation coefficient of either !1 or +1 between k and LC4. to determine 
whether the default assumption of a correlation coefficient of 0 might cause 
substantial errors. 

3.2.3 Pooled Data Set Analyses 

 Analyses were conducted on the pooled data of all 26 constant concentration tests to 

provide the most complete information for assessing model attributes and overall parameter 

values.  These pooled data include some tests (those with exposures # 24 h) in which delayed 

mortality was monitored.  Three versions of this pooled data set were used in the analyses to 
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variously address this delayed mortality information:   

(1) Pooled data set "PE" (delayed mortality "excluded") consisted of all the 
observations up to the end of the exposure in each toxicity test, and thus did not 
include information on the observed delayed mortality.  This dataset was analyzed 
using all three models and the various options concerning the parameter 
distributions, allowing the relative merits of the model formulations to be assessed 
using the type of data typically available from toxicity tests.  Fitting Model D2X 
to such data still supports prediction of delayed mortality, and allowed evaluation 
of how well delayed mortality was predicted even when it was not included in the 
model parameterization.  

(2) Pooled data set "PI" (delayed mortality "included") consisted of all the 
observations in each toxicity test, including those made of mortality after the end 
of exposure.  This dataset was only used to parameterize Model D2X because 
Models D1 and D2 do not explicitly address such delayed mortality.  This allowed 
comparison of how parameter values and model fit differed for Model D2X when 
delayed mortality was included or excluded in parameter estimation, and thus how 
well Model D2X actually describes the processes responsible for mortality both 
during and after exposure.  

(3) Pooled data set "PA" ("adjusted" for delayed mortality) addressed the delayed 
mortality information so that Models D1 and D2 could be applied.  This was 
accomplished by relating observed mortality to the exposure period needed to 
elicit the mortality, not to the time at which the actual mortality was observed.  
For exposures #24 h, for which delayed mortality was assessed, this required 
combining all the observations for each test and concentration (including the 
delayed mortality) into a single observation which specified the mortality 
resulting from that exposure duration and concentration.  For exposures >24 h, 
observed mortality up to 24 h was combined, so that the first observation was the 
cumulative mortality at 24 h, thereby eliminating any appreciable effect of 
delayed mortality on the time course of toxicity; later observations were not 
modified.  This still allows a meaningful expression of risks, because the 
mortality resulting from a particular exposure is addressed, albeit not the exact 
time sequence of the mortality.  It also allows Models D1 and D2 to be used to 
address delayed mortality, because these models can be considered to describe the 
attainment of a lethal condition, with the delay in the observed mortality not being 
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explicitly modeled.  This data set was not used to parameterize Model D2X 
because adjusting the data for delayed mortality already served the purpose of the 
second kinetic constant in the first phase of toxicity of this model; however, how 
well Model D2X predicted these adjusted data was still evaluated. 

   Table 3.1 summarizes the distributional parameter estimates for each model without 

(pooled data set PE) and with (pooled data set PI or PA) consideration of delayed mortality.  

Parameter estimation assumed that the logarithms of the organism-level parameters have a 

triangular distribution, so the table includes the estimated mean and standard deviation of the 

base 10 logarithm of the parameters.  For example, for model D1 parameterized using pooled 

data set PE, the log10(LC4,A ) is estimated to be distributed with mean 2.042 and standard 

deviation 0.152.  The table gives the standard error for each such distributional parameter 

estimate, this uncertainty being very small because of the large amount of data in the pooled dat 

sets.  The table also lists the antilog of the mean estimates for the log parameters, which provides 

a median estimate for each organism-level parameter on its original scale.  For model D1 

parameterized using pooled data set PE these median estimates are 110 ug Cu/L for LC4 and 

0.0284/h for k.   

 This table provides three columns for the AIC, corresponding to the three different 

pooled data sets used in the analyses.  The AIC in bold text indicates the data set to which the 

likelihood was maximized for each analysis; however, AICs for the other data sets also can be 

computed, and are provided where useful for discussing model performance below.  For 

example, if Model D2X is parameterized using data set PE, how well does it predict the delayed 

mortality data in set PI, compared to when it is parameterized using set PI?  If the model is 

sufficient, such cross predictions should be good, and discrepancies can help identify model 

limitations.  However, AICs can only be compared within columns because the different  
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Table 3.1. Deterministic model parameter estimates based on pooled constant-concentration toxicity tests (26 tests, 2.5-192 hr).  
Parentheses denote standard error of parameter estimates.  Bold AIC values denote AIC for data set used in parameterization.) 
 
 
 

Median Value for Parameter  Mean of Log10 Parameter  Standard Deviation of Log10 Parameter Akaike Information Criterion 
Analysis 
Options 

LC4,A 

:gCu/L 
kA 

1/hr 
LC4,B 

:gCu/L 

kB1 

1/hr 
kB2 

1/hr LC4,A kA LC4,B kB1 kB2 LC4,A kA LC4,B kB1 kB2 AIC-PE   AIC-PI AIC-PA

Model D1 
(Separate SD) 

(Pooled Set PE) 
 

110  0.0284    2.042 
(0.007) 

-1.546 
(0.009)    0.152 

(0.003) 
0.220 
(0.003)    6896   

Model D2 
(Shared SD) 

(Pooled Set PE) 
 

91    0.0136 229 0.088  1.957 
(0.011) 

-1.865 
(0.019) 

2.368 
(0.007) 

-1.056 
(0.012)  0.150 

(0.002)  6597 11570  

Model D2X 
(Shared SD) 

(Pooled Set PE) 
(Unequal  k) 

87  263     0.0131 0.224 0.341 1.941 
(0.010) 

-1.884 
(0.012) 

2.420 
(0.004) 

-0.649 
(0.082) 

-0.467 
(0.099) 

0.163 
(0.002) 6437 9315 4562

Model D1 
(Separate SD) 

(Pooled Set PA) 
104  0.0326    2.017 

(0.007) 
-1.486 
(0.012)    0.112 

(0.005) 
0.372 
(0.008)      4552 

Model D2 
(Shared SD) 

(Pooled Set PA) 
 

90    0.0137 264 0.187  1.956 
(0.011) 

-1.862 
(0.018) 

2.422 
(0.005) 

-0.726 
(0.011)  0.153 

(0.002)    4018 

Model D2X 
(Shared SD) 

(Pooled Set PI) 
(Equal  k) 

88    0.0192 174 0.165 1.943 
(0.010) 

-1.716 
(0.016) 

2.240 
(0.006) 

-0.783 
(0.006) 

0.194 
(0.002) 6793 8835 4771 

  

 
 



columns have different general magnitudes depending on the amount of data in each data set.  

 For Models D2 and D2X, the analyses shown in Table 3.1 are those in which the 

organism-level model parameters share the same standard deviation.  Analyses in which separate 

values for these standard deviations were estimated (not shown) provided little or no 

improvement in the AIC and produced similar values for the standard deviations of the different 

organism-level parameters.  For Model D1, the analyses shown in Table 3.1 are those with 

separate values for the standard deviation of k and LC4 because this did result in appreciably 

better fit than the analyses with a shared standard deviation (not shown).  The different values for 

the standard deviations of k and LC4  for Model D1 are symptomatic of this model ignoring the 

biphasic nature of the model, which causes the standard deviation of the k to be inflated because 

it is a compromise value for the different kinetic constants of the two phases. 

 Analyses in which the organism-level model parameters were assumed to be correlated 

rather than independent are also not shown in Table 3.1 because this resulted in poorer model 

fits.  Such poorer fit provides support for the assumption of parameter independence in the 

analyses, although it is still possible that some limited correlation exists. 

 Figure 3.3 illustrates the relative fits of the analyses shown in Table 3.1 by comparing 

predicted LC50s and LC10s to average observed LC50s and LC10s at 2.5, 4, 8, 12, 24, 48, 96, and 

192 h.  The left panels show observed LCps for mortality occurring up to the designated exposure 

duration; the model prediction lines are for Models D1 and D2 parameterized with data set PE, 

and Model D2X parameterized with both data sets PE and PI.  The right panels show observed 

LCps adjusted for the mortality occurring after the end of exposure; the model prediction lines 

are for Models D1 and D2 parameterized with data set PA, and Model D2X parameterized with 

both data sets PE and PI.  The predicted LCPs were calculated by Monte-Carlo simulations. 
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Figure 3.3.  LC50 and LC10 versus time for toxicity of copper to juvenile fathead minnows for constant exposures.  The left 
panels address LCps at the end of the specified exposure periods (not adjusted for mortality after the exposure) while the right 
panels address LCps adjusted for mortality occurring after the specifed exposure periods.  Circles (M) denote average 
observed LCps from 26 constant-exposure toxicity tests.  For model D1 ( ) and model D2 ( ), parameterization 
used pooled data set PE for the left panels and pooled data set PA for the right panels, because predictions of LCp with and 
without delayed mortality required the different data treatments.   For model D2X, parameterization with pooled data set PE 
( ) and pooled data set PI ( ) are included on both left and right panels because this model can do predictions of 
LCp with and without delayed mortality with either parameterization.  The inset boxes provide the relative sum of squared 
deviations (R2) of the predicted and observed LCps for each model; the R2 is identified according to the model used for the 
prediction and the data set used to parameterize the model.   
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9999 sets of organism-level model parameters were generated by random selection from the 

maximum likelihood estimates for the distributions of these parameters (Table 3.1).  The model 

was then applied to each parameter set to estimate LCs for exposure durations from 2 to 200 h 

(for Model D2X, both including and excluding mortality expected after exposure).  The LCP for 

each duration was set to the appropriate percentile within these sets of LCs.  The fits of the 

model-estimated LCPs to the observed LCPs were summarized using the R2 statistic (Figure 3.3), 

although this not statistically rigorous because the LCPs are not statistically independent. 

 The analyses summarized in Table 3.1 and Figure 3.3 support the following observations 

regarding the relative merits of the models which were evaluated: 

(1)  Adding the second mechanism of toxicity results in appreciably improved fit relative 
to a single mechanism.  When parameterized using data set PE, the AIC-PE for Model 
D2 is 4.5% less than that for Model D1 (Table 3.1).  When parameterized using pooled  
data set PA, there is even a greater improvement of 13% in AIC-PA (Table 3.1), because 
adjusting for delayed mortality further increases the biphasic nature of the toxicity.  This 
better fit is evident in Figure 3.3, in which Model D2 closely follows the biphasic nature 
of the average observed LC50s and LC10s, whereas the simple exponential decline of 
Model D1 shows substantial deviations.  This is reflected in the R2 for the deviation of 
model predictions from the LC50s and LC10s.  Although Model D1 has respectable R2s  
(86-90%), Model D2 is much better (98-99%). 

(2)  Adding the second kinetic constant to the fast mechanism of toxicity in Model D2X 
results in additional improvement in fit relative to Model D2.  When parameterized using 
pooled data set PE, the AIC-PE for Model D2X is 2.5% lower than that for Model D2 
(Table 3.1).  The importance of this second kinetic constant is most evident in the AICs 
in Table 3.1 that included the delayed mortality (data set PI).  For Model D2 
parameterized using data set PE, AIC-PI, which includes the delayed mortality, is 4973 
greater than AIC-PE; this increase is the maximum possible because this model predicts 
no delayed mortality.  For Model D2X parameterized using pooled data set PE, this 
increase is only 2878, indicating it predicts a large fraction of the delayed mortality, in 
addition to the improved fit during the exposure period.  The importance of the second 
kinetic constant is also suggested in the left panels of Figure 3.3, where Model D2X 
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shows steeper slopes than Model D2 in the first phase of toxicity, such steeper slopes also 
being evident in the observed LC50s and LC10s.  (This benefit of the second kinetic 
constant is not reflected in better R2s for Model D2X than Model D2 because these R2s 
do not consider the "greater than" values at 2.5 h and thus do not adequately account for 
the steep slopes at short durtions) 

(3)  Including the delayed mortality in the parameterization of Model D2X has mixed 
effects on model performance.  There was a 5% decrease in AIC-PI when Model D2X 
was parameterized using data set PI compared to the AIC-PI when the model was 
parameterized using data set PE.  Although this decrease is appreciable, it is not much of 
an improvement considering that the better fit was based on a lot of additional 
information.  Furthermore, improved fit for the delayed mortality was at the expense of a 
worse fit to the data within the exposure periods (AIC-PE in Table 3.1) and resulted in a 
loss of the biphasic behavior of the model and much poorer R2 for predicting LCps during 
the exposure period (Figure 3.3).  These problems with fit suggest that the mechanisms 
causing the delayed mortality are not accurately described by the model.  This 
inadequacy of the model is also indicated by kB1 and kB2 being equal when parameterized 
using data set PI.  When these constants are equal, the delayed mortality is at its 
maximum relative to the mortality within the exposure period, and the fact that the model 
parameterization was pushed to this limit indicates an inadequacy for describing the 
relationship of mortality during and after exposure.  

(4)  Model D2 can effectively describe delayed mortality if the data can be adjusted for 
these delays as with data set PA.  As noted above, Model D2 parameterized to data set 
PA results in high prediction R2s for the average observed LC50s and LC10s adjusted for 
delayed mortality (right panels of Figure 3.3).  In contrast, Model D2X parameterized 
based on pooled data set PE resulted in higher AIC-PA than Model D2 (Table 3.1) and 
smaller R2s for the delay-adjusted LC50s and LC10s in Figure 3.3.  Although this poorer fit 
for Model D2X is due to the advantage Model D2 has in being parameterized based on 
the adjusted data, it still indicates that Model D2X does not completely reflect the 
processes producing delayed mortality.  Nonetheless, Model D2X parameterized with 
data set PE still produced good R2 for predicting the LCps in the right panels of Figure 
3.3, and thus would still be useful for data sets without explicit information on delayed 
mortality. 

 The pooled analyses thus showed importance for addressing both the biphasic nature of the toxic 

response and the existence of delayed mortality.  If appropriate information is available on the delayed 
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mortality to adjust the data to reflect time-to-lethal-exposure rather than time-to-death, using such 

adjusted data with Model D2 provides the best performance (provided the risk predictions do not need to 

explicitly address time-to-death).  In the absence of such information, Model D2X provides a means to 

address much, but not all, of the delayed mortality based on inference from the mortality patterns within 

the exposure period.  However, although these analyses have shown certain differences in model 

performance for describing constant-concentration tests, it is not possible to state how important this will 

be for addressing fluctuating exposures.  Therefore, all three models will be considered in section 3.2.5 

regarding pulsed exposures, using the parameter values from Table 3.1.    

3.2.4 Individual Data Set Analyses 

 The pooled data addressed above has much more information than typically will be 

available for model parameterization, and the standard errors of the parameters are consequently 

misleadingly small because the analyses assume that whatever model is being evaluated is 

absolutely correct and that the true parameter values are the same for all the toxicity tests.  Under 

such assumptions, this large amount of data results in small standard errors that do not reflect 

model formulation error or variations among tests, and thus do not provide a basis for reasonably 

assessing the uncertainty of model estimates.  To address the issue of parameter differences 

among tests, and thus better describe uncertainty, the models were also parameterized based on 

individual toxicity tests within the pooled data set which were of sufficient duration to include 

both phases of toxicity (seven 96-hr and five 192-hr tests).  Because these tests had no delayed 

mortality information, this parameterization was analogous to pooled data set PE regarding the 

type of information available.  Based on the findings of the pooled analyses, Model D1 was 

parameterized with separate standard deviations for the two organism-level model parameters 

and Models 2 and 3 were parameterized with shared standard deviations.     

 Table 3.2 provides the averages (across tests) of the maximum likelihood estimates 
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Table 3.2. Deterministic model parameter estimates based on analysis of individual constant-concentration toxicity tests (seven 96-
hr tests, five 192-hr tests).  (Parentheses denote standard deviation of individual estimates.) 
 
 

Median Value of Parameter Mean of Log10 Parameter Standard Deviation of Log10 Parameter 
Analysis 
Options 

LC4,A kA1 LC4,B kB1 kB2 LC4,A kA1 LC4,B kB1 kB2 LC4,A kA1 LC4,B kB1 kB2

Akaike 
Information 

Criterion 

Model D1 
(Indiv SD) 

(96 hr Tests) 
 

104  0.0317    
2.016 
(0.029) 
[0.083] 

-1.499 
(0.055) 
[0.118] 

   
0.109 
(0.021) 
[0.041] 

0.278 
[0.031] 
(0.055) 

    194-491

Model D1 
(Indiv SD) 

(192 hr Tests) 
 

105  0.0205    
2.020 
(0.026) 
[0.089] 

-1.688 
(0.039) 
[0.224] 

   
0.135 
(0.016) 
[0.025] 

0.175 
[0.026] 
(0.040) 

    350-446

Model D2 
(Shared SD) 
(96 hr Tests) 

 
61    0.0087 211 0.117  

1.784 
(0.127) 
[0.069] 

-2.062 
(0.171) 
[0.224] 

2.324 
(0.021) 
[0.085] 

-0.933 
(0.039) 
[0.079] 

 
0.125 
(0.008) 
[0.017] 

  176-455

Model D2 
(Shared SD) 

(192 hr Tests) 
 

95    0.0125 279 0.091  
1.980 
(0.030) 
[0.107] 

-1.903 
(0.048) 
[0.174] 

2.446 
(0.029) 
[0.092] 

-1.039 
(0.056) 
[0.110] 

 
0.128 
(0.007) 
[0.012] 

  337-415

Model D2X 
(Shared SD) 
(96 hr Tests) 

 
64     0.0095 225 0.200 0.703

1.804 
(0.099) 
[0.060] 

-2.026 
(0.135) 
[0.206] 

2.350 
(0.018) 
[0.108] 

-0.701 
(0.083) 
[0.163] 

-0.157 
(0.237) 
[0.291] 

0.131 
(0.008) 
[0.020] 

173-456 

Model D2X 
(Shared SD) 

(192 hr Tests) 
 

95     0.0123 303 0.192 0.502
1.981 
(0.030) 
[0.107] 

-1.906 
(0.055) 
[0.170] 

2.480 
(0.022) 
[0.089] 

-0.720 
(0.076) 
[0.112] 

-0.304 
(0.240) 
[0.322] 

0.131 
(0.007) 
[0.011] 

337-407 

  
  



and standard errors for the log10 distributional parameters (mean and standard deviation) of each 

organism-level model parameter, with separate entries for each test duration.  This table also 

provides the standard deviations of these distributional parameters across the individual tests.  

The magnitude of these standard deviations among tests relative to the average of the standard 

errors estimated for the individual tests is indicative of whether there are important sources of 

uncertainty not included in the model analyses (e.g., variability of organism sensitivity across 

tests).  These analyses of individual toxicity tests support the following observations regarding 

the models: 

(1)  On average, the AIC was reduced by Model D2 substantially (9%) in comparison to 
Model D1, reinforcing the importance of describing the biphasic nature of the data and 
illustrating how this is evident even in the individual data sets.  Model D2X provided no 
further reduction of the AICs (<0.5%), which was likely due to these individual toxicity 
tests not having sufficient information at shorter durations and high concentrations to 
discriminate Model D2 and Model D2X, in contrast to the more diverse set of tests used 
for the pooled analysis.  This inadequate information to parameterize Model D2X 
resulted in large standard errors for kB2.  

(2)  In general, the average distributional parameter estimates for the individual toxicity 
tests were similar to the estimates for pooled data set PE (Table 3.1) and were also 
similar between the two different test durations in Table 3.2.  A notable exception to this 
similarity is that, for Models D2 and D2X, the LC4,A and kA were substantially smaller on 
average for the individual 96-h tests than for either the pooled data or the individual 192-
hr tests.  This represents a limitation of addressing two phases of toxicity from such short 
tests, in which evaluating the second phase of  toxicity depends on data from 24 to 96 h, a 
limited time range which is unlikely to contain enough information to extrapolate well to 
longer durations.  Providing the best fit to data at <96 h can thus result in erroneous 
extrapolations to longer durations.  This indicates the need for integrating analyses of 
acute toxicity tests with longer exposures, which was satisfied at least to some degree by 
the 192 h exposures. 

(3)  As expected, the average standard errors of the distributional parameters from the 
analyses of individual toxicity tests (Table 3.2) are much greater than the standard errors 
for the pooled data analyses (Table 3.1).  This simply reflects the greater uncertainty of 
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any estimates from more limited data.  More importantly, the average standard errors (in 
parentheses in Table 3.2) are generally smaller than the standard deviations across 
individual tests (in brackets in Table 3.2), indicating the presence of between-test 
variability that isn't addressed in the error estimation portion of model parameterization.  
An exception to this is again the LC4,A and kA estimates for the 96-hr tests, which had 
high standard errors because of the lack of sufficient information from longer times 
needed to adequately characterize this phase of the toxicity. 

 These analyses of individual level tests thus further indicated some importance of 

addressing the biphasic nature of the data, indicating the advisability of using Model D2 and 

D2X.  However, these analyses also showed potential problems in parameterizing either Model 

D2 or D2X based just on 96-hr tests and in parameterizing Model D2X (and thus inferring some 

of the delayed mortality) without sufficient data on deaths at early times at high concentrations.  

These analyses also demonstrated the potential problems with basing model prediction errors on 

standard errors estimated as part of model parameterization procedures that do not address 

between-test variability.  The next subsection will further explore how important these 

performance and uncertainty issues are in the prediction of the effects of pulsed exposures, 

including consideration of how parameter variability among different toxicity tests can provide 

uncertainty information for model predictions. 

3.2.5 Predictions of Pulsed Exposures  

 Although analysis of constant exposure tests provides some basis for evaluating the 

appropriateness of different model formulations, the ultimate measure of the utility of a model 

will be how well it predicts effect levels for a range of exposure scenarios with fluctuating 

concentrations.  In this section, such predictions will be examined for some intermittent exposure 

toxicity tests. 

 Lindberg and Yurk (1982, 1983a, 1983b) conducted six intermittent exposures consisting 

of 2.5- to 12-h exposures to copper separated by 5.5- to 20-h exposures to control water (8 to 24 
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hr total cycle time for copper plus control exposure periods).  Experimental procedures resulted 

in a rapid enough transition between the exposure and control periods that these experiments can 

be treated as “on-off” or “rectangular” pulses for the purposes of model predictions.  Figure 3.4 

shows measured LC50s and LC10s (filled circles) at the end of the control period following each 

pulse (thus including any delayed mortality after the pulse), based on the average concentration 

over the entire cycle.  The average concentration is used here rather than the pulse concentration 

because it provides a more useful comparison among different exposure scenarios, including 

constant exposures.  Figure 3.4 also shows the LC10s and LC50s (empty circles) from constant 

exposure tests run simultaneously with each pulsed-exposure test.  

 For the pulsed exposures tested, the measured LCps (filled circles) show only small 

effects of time.  Relative to the first pulse, LC50s changed by less than 5% for the once-daily 

pulses (24-hr exposure cycle), by about 20% for the twice-daily pulses (12-h exposure cycle), 

and 35% for the thrice-daily scenarios (8-h exposure cycle).  This is in contrast to the much 

greater time-dependence of the constant exposure LCps (empty circles), where the changes were 

60-70%.  Such reduced time-dependence of pulsed-exposure LCps versus constant-exposure 

LCps is expected when constant-exposure LCps decline less than proportionately with time, so 

that high pulses averaged over the exposure cycle are more damaging than a constant exposure 

with the same average over that period.  The initial fast phase of toxicity and the delayed 

mortality also contribute to the limited time-dependence of the pulse LCps. 

 Another feature of the observed data is that the pulsed exposures LCps (filled circles) at 

the end of the tests are higher than for the companion constant exposure tests (empty circles) 

when the pulse period is 50% of the pulse cycle, but lower when the period is only 17-33% of the 

cycle.  This effect is rather small, but noteworthy because pulsed exposures generally exert 
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Figure 3.4.  Toxicity of copper to juvenile fathead minnows in pulsed exposures.  Solid circles (M)denote 
observed LCPs for each pulse based on average concentration over pulse cycle and mortality at end of pulse 
cycle.  Open circles (!)denote observed LC50s at the same times in companion constant exposure tests.  Model 
predictions are provided for models D1 ( ) and D2X ( ) parameterized with pooled data set PE and 
model D2 ( ) parameterized with pooled data set PA.  Gray band denotes 10-90th percentile range of 
predictions of Model D2X parameterized using individual 192-hour toxicity tests. 
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greater effects than constant exposures when compared on the basis of average concentrations, 

regardless of the nature of the pulses.  This effect is also noteworthy in that it is not predicted by 

the models considered here, so it might reflect unidentified processes in the pulsed exposure that 

ameliorate effects, such as physiological recovery/adaptation during the control period exposure 

between pulses.  Such processes would also contribute to the lack of time-dependence in the 

observed pulsed LCps. 

 Figure 3.4 also includes model predictions of the pulsed-exposure LC50s and LC10s.  The 

dashed and dashed-dotted lines represent predictions based on Models D1 and D2X, 

respectively, parameterized with pooled data set PE.  These predictions for Models D1 thus do 

not reflect delayed mortality and for Model D2X only reflect expected delayed mortality inferred 

from the mortality patterns within the exposure periods of the constant concentration tests.  The 

bold solid line denotes prediction based on Model D2 parameterized with pooled data set PA, 

and thus includes expectations based on more complete information regarding delayed mortality.  

For each model, 999 sets of organism-level parameters were randomly generated from the 

distribution parameters in Table 3.1 and each such set was used to generate an expected 

organism LC (including mortality delays) for each pulse of the intermittent exposures sequences 

shown in Figure 3.4.  The predicted pulse LC10s and LC50s were set to the 10th and 50th 

percentiles of the resultant LC sets. 

 The shaded areas on Figure 3.4 denote the 10th and 90th percentile predictions based on 

parameters estimated from the individual 192-h toxicity tests.  The average and the standard 

deviation of the distributional parameters across the 192-h toxicity tests for Model D2X in Table 

3.2 were used to randomly generate 999 sets of distributional parameters for this model, which in 

turn were each used to generate 999 sets of organism-level parameters.  Each of these 999 sets of 
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organism-level parameters was used to predict the pulse LC10s and LC50s, and the 10th and 90th 

percentiles of these LCps bound the shaded areas on Figure 3.4.  The width of the shaded area 

thus represents the general magnitude of the uncertainty that would arise in LCps due to variation 

among tests. 

 The models predict more time-dependence of the pulsed LCps than actually observed 

(Figure 3.4, Table 3.3).  The degree of the time dependence in these predictions decreases from 

Model D1 to Model D2 to Model D2X when parameterized using pooled data set PE, reflective 

of the importance of the initial fast toxicity phase and of delayed mortality for the low LCps in 

the initial pulses.  The predictions of Model D2 parameterized using data set PA, for which the 

delayed mortality is fully reflected in the initial fast toxicity phase, show even less time-

dependence, the predicted ratio of the first to the last pulse only being 10-20% higher than 

observed (Table 3.3).  This predicted time dependence indicates the models (as parameterized) 

do not fully describe all the processes important for this pulsed toxicity.  Nevertheless, the 

predictions are still within a factor of 2 of observations and, if the initial fast toxicity phase is 

addressed, the limited time-dependence of the observed pulsed LCps is predicted well enough for 

these models to have considerable utility. 

 
 

Table 3.3.  Observed and predicted ratios of LC50 of first pulse to LC50 of last pulse .   
 

Ratio of LC50 of first pulse to last pulse Pulse Duration/ 
Recovery (h) 

Observed Model D1-PE Model D2-PE Model D2X-PE Model D2-PA

4/20 1.03 2.0 1.6 1.5 1.2 

12/12 1.02 1.7 1.5 1.4 1.2 

4/8 1.2 2.7 2.0 1.7 1.4 

6/6 1.3 3.0 2.3 2.0 1.6 

2.5/5.5 1.5 3.7 2.5 2.3 1.7 

4/4 1.6 3.7 2.6 2.3 1.7 
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3.3 Evaluation of Stochastic Models 

3.3.1 Models Evaluated 

 Based on the exploratory data analyses discussed in Section 3.1, two stochastic models 

were evaluated:   

(1) Model S1 was the single-compartment and single-mechanism model of Equation 
2.27-2.29.  As for deterministic Model D1, this is a baseline model that might typically 
be used in the absence of a demonstrated need for more complex models.  The parameters 
for this model are C0A, dA, and kA, where the subscript A designates the mechanism. 

(2) Model S2 included two independent mechanisms to address the biphasic nature of the 
data discussed in Section 3.1.  For the stochastic model being used here, multiple, 
independent mechanisms simply involve summing the hazard rate expressions (Equation 
2.28) for the separate mechanisms.  For the second mechanism, the model parameters are 
designated as C0B, dB, and kB. 

3.3.2 Pooled Data Set Analyses 

 Parameters for Models S1 and S2 were estimated using both data set PE (excluding 

delayed mortality observations) and pooled data set PI (including delayed mortality) as described 

in Section 3.2.3.  Table 3.4 provides the maximum likelihood estimates and standard errors for 

the log-tranformed parameters, the untransformed parameter values, and the AIC scores for each 

analysis.  Figure 3.5 shows the model predictions for LC50s and LC10s under constant exposure, 

both unadjusted and adjusted for delayed mortality, analogous to Figure 3.3. 

 The analyses summarized in Table 3.4 and Figure 3.5 support the following observations 

regarding the relative merits of the models which were evaluated:   

(1)  As for the deterministic model, adding the second mechanism of toxicity results in 
appreciably improved fit relative to a single mechanism because of the biphasic nature of 
the data.  Including the second mechanism for parameterization using pooled data set PE 
resulted in a 6% reduction of AIC-PE and, for parameterization using pooled data set PI, 
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Table 3.4. Stochastic model parameter estimates based on pooled constant-concentration 
toxicity tests (26 tests, 2.5-192 hr).  (Parentheses denote standard error of log parameter 
estimates.) 
 

Parameter Values Log Parameter Values AIC 
Analysis 
Options 

C0A
dA
H103 kA C0B

dB
H103 kB C0A dA kA C0B dB kB PE PI 

Model S1 
(Date Set PE) 76 0.244 0.356    1.883 

(0.002)
-3.613
(0.011)

-0.448
(0.019)    7085 9709 

Model S1 
(Date Set PI) 75 0.150 0.597    1.876 

(0.003)
-3.824
(0.008)

-0.224
(0.029)    7252 9418 

Model S2 
(Data Set PE) 69 0.148 0.184 269 0.743 0.393 1.836 

(0.003)
-3.831
(0.016)

-0.734
(0.024)

2.430 
(0.009)

-3.129 
(0.022) 

-0.406 
(0.018) 6687 10360

Model S2 
(Data Set PI) 68 0.107 0.489 340 0.222 0.719 1.834 

(0.004)
-3.969
(0.013)

-0.311
(0.040)

2.532 
(0.012)

-3.653 
(0.031) 

-0.143 
(0.051) 7079 9291 

 

 

resulted in a 2% reduction in AIC-PI (Table 3.4).  For the LCps in Figure 3.5, the R2 for 
Model S2 is always higher than for Model S1. 

(2) As for the deterministic model, including the delayed mortality in model 
parameterization had mixed effects, again indicating that the nature of the relationship of 
the delayed mortality to the mortality during the exposure period was somewhat different 
than assumed by the models.  When the model was parameterized using the delayed 
mortality (data set PI), the AIC-PI was, as expected, lower than when the models were 
parameterized using data set PE (Table 3.4); however, this was at the expense of a poorer 
fit during the exposure period (AIC-PE).  This is reflected in Figure 3.5, in which R2s are 
worse for the models parameterized based on data set PI. 

(3) In general, the stochastic models showed poorer fit to the data than the deterministic 
models.  Whether parameterized to data set PE or PI, the stochastic models had higher 
AICs than the comparable deterministic model analyses (Table 3.4 versus Table 3.1).  
Similarly, the R2 for the predicted LC50s and LC10s also were slightly to substantially 
poorer for the stochastic models (Figure 3.5) than for the deterministic models (Figure 
3.3). 
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Figure 3.5.  LC50 and LC10  versus time for toxicity of copper to juvenile fathead minnows for constant exposures.  The left 
panels address LCps at the end of the specified exposure periods (not adjusted for mortality after the exposure) while the right 
panels address LCps adjusted for mortality occurring after the specifed exposure periods.  Circles (M) denote average 
observed LCps from 26 constant-exposure toxicity tests.  Model predictions are for model S1 parameterized with pooled data 
set PE ( ) and pooled data set PI ( ) and model S2 parameterized with pooled data set PE ( ) and pooled data 
set PI ( ).  The inset boxes provide the relative sum of squared deviations (R2) of the predicted and observed LCps for 
each model; the R2 is identified according to the model used for the prediction and the data set used to parameterize the 
model. 
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(4) One aspect of the poorer fit of stochastic models is that they overestimate the 
difference between the LC50s and LC10s (Figure 3.5) at short durations and underestimate 
the difference for the longer durations, in contrast to the deterministic models (Figure 
3.3).  This is again due to the difference between LCps being tightly linked to the effect of 
time (killing rate) for the stochastic model, whereas for the deterministic model the 
difference between LCps is independent of the time effect.  If the time course of toxicity 
indicates the need for a certain killing rate, this can cause such inappropriate estimates of 
the difference between LC50s and LC10s.  In addition, Model S2 also did not show the 
strong observed biphasic behavior for LC10s (Figure 3.5), whereas the Models D2 and 
D2X did (Figure 3.3). 

3.3.3 Predictions of Pulsed Exposures 

 Figure 3.6 provides predictions for the pulsed exposures using Models S1 and S2 

parameterized using data set PE, contrasted with the predictions for Model D2 parameterized 

with data set PA.  Like the deterministic models parameterized without information on delayed 

mortality, these stochastic models predict more time dependence of the pulse LC50s and LC10s 

than was observed, but stochastic model S2 still provides reasonable predictions.  For some 

exposure durations, the stochastic models also tend to give poorer predictions of the difference 

between the LC50s and LC10s, as was true for the constant concentration exposures (Figure 3.5). 

 By assuming that all organisms have identical sensitivities, the stochastic models also 

require that, if a certain percentage of organisms are killed in the first pulse, at least this 

percentage of the survivors will be killed in the next pulse, and so on until all the organisms have 

died after a sufficient number of pulses.  The data in these experiments contradict this, with 

various exposures showing partial kills in the first pulse with little or no subsequent mortality in 

subsequent pulses.  This aspect of the stochastic models also would predict a convergence of the 

LC50s and LC10s at later pulses, which, while not always evident in the time span of these tests,  

is also contradicted by the observed LCps.  This indicates the importance of having some 

 
 70 



 
 71 

Figure 3.6.  Toxicity of copper to juvenile fathead minnows in pulsed exposures.  Solid circles (M)denote 
observed LCPs for each pulse based on average concentration over pulse cycle and mortality at end of pulse 
cycle.  Open circles (!)denote observed LC50s at the same times in companion constant exposure tests.  Model 
predictions are provided for models S1 ( ) and S2 ( ) parameterized with pooled data set PE, compared 
to model D2 ( ) parameterized with pooled data set PA.   
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differences in sensitivity among the organisms to explain both the time-dependence of the pulse 

LCps and differences between the LC50s and LC10s, which is just not addressed by the stochastic 

models as formulated.  The stochastic models could be modified to include differences among 

the organisms; however, this would increase model complexity and make the stochastic aspect of 

these models less important, if not superfluous. 

3.4 Summary and  Model Application to Aquatic Life Criteria 

 The above analyses of the data of Lindburg and Yurk (1982, 1983a, 1983b) demonstrated 

that the toxicity models discussed in Section 2 can be effectively parameterized and, in some 

cases, used to make useful predictions for both constant and pulsed exposures.  For this data set, 

the stochastic models (Models S1 and S2) and the single-mechanism deterministic model (Model 

D1) do not perform well, lacking the ability to describe certain features of the observed 

mortality.  In particular, Models S1 and D1 do not address the biphasic nature of the data and the 

stochastic models do not address sensitivity differences among organisms that are evident in the 

data.  The deterministic models which address the biphasic nature of the data and delayed 

mortality, and which include differential sensitivity among the organsisms (Model D2X and 

Model D2 parameterized with data adjusted for delayed mortality), provide better performance 

that approximates observed mortality reasonably well. 

 However, the applicability of any of these models to aquatic life criteria is still not 

resolved without comparing their predictions to the types of exposure time-series that aquatic life 

criteria must handle, and the poorer performing models identified above still might have 

acceptable utility.  Pulsed-exposures such as those examined above represent an extreme in time-

variability, which would tend to maximize prediction errors for the models used here and 

magnify differences between the models.  In particular, the low LCps of the initial pulses and the 
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limited time-dependence of LCps of later pulses are in large part due to the abrupt, high exposure 

of  previously unexposed organisms to the first pulse, which increases the importance of the 

initial fast toxicity phase and the delayed mortality associated with this phase.  This would be 

relevant to spill situations or short, intermittent exposures preceded by low concentrations, but 

might not be important to more typical exposure time-series of concern to aquatic life criteria. 

 The sensitivity of predictions to model formulations will be further examined here using 

some hypothetical exposure time-series more germane to aquatic life criteria.  Ten-year exposure 

time-series were generated by randomly selecting base 10 logarithms of mid-day concentrations 

from normal distributions with different standard deviations (F=0.1 or 0.3) and auto-correlation 

coefficients (D=0.5 or 0.99).  Concentrations between these mid-day concentrations were 

assigned by linear interpolation.  For a median concentration of 100 :g Cu/L, Figure 3.7 shows 

the first year of these time-series, illustrating how they differ both in variability and smoothness.  

It should be noted, however, that these exposure time-series are still relatively simple and do not 

incorporate seasonality and intermittency that might be important for aquatic life criteria.  Other 

types of time-series will need to be examined as new criteria procedures are developed, before 

conclusions about these models are finalized.  The examples given here are intended just to 

demonstrate how these models can be applied to exposure scenarios of concern and how the 

merits of different model formulations can be assessed.   

 These time-series cannot be analyzed like the constant and pulsed exposure toxicity tests 

discussed previously, which have a definite beginning and end and use a single set of previously-

unexposed organisms.  For the deterministic models, once organisms of a given sensitivity die, 

the impacts of the rest of the exposure time-series on organisms with that sensitivity are not 

assessed.  By random chance, the deaths for this sensitivity level can be early or late in the 
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Figure 3.7.  Portions of time-series used for comparing risk levels predicted by different toxicity models under 
fluctuating log-normal concentration scenarios.  These panels show the time-series with log mean = 2, log 
standard deviation = 0.1 or 0.3, and daily autocorelation coefficient = 0.50 or 0.99. 
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time-series, which does not provide a meaningfully measure of risk; rather, risks can be 

meaningfully quantified only by testing multiple sets of organisms with different time-series or 

different starting points.  For the stochastic models this is not as serious of an issue, because the 

assumption that all organisms having the same sensitivity allows risks to be computed for the 

surviving organisms; however, these risks will vary depending on the starting point of exposure, 

so there is still a need for different sets of organisms with different time-series or exposure 

starting points within a series.  The use of multiple sets of organisms has the added advantage of 

allowing some consideration of the exchange of organisms in natural populations between areas 

of low and high exposure. 

 The analyses conducted for the time-series of Figure 3.7 therefore involved a new cohort 

of organisms being introduced each day and evaluating the combined effect on all such cohorts.  

To avoid an indefinite buildup of the number of organisms and needing to computationally track 

so many organisms, the cohorts were gradually removed over a period of 50 d, emulating 

migration out of the exposure area.  The effect measure used was the percentage mortality each 

day of the combined organisms for all cohorts at the start of the day.  This mortality rate was 

evaluated for each of the four time-series at 100 median concentrations ranging from 5 to 200 :g 

Cu/L.  Six models were used in this analysis, including Models D1, D2, D2X, S1, and S2 

parameterized with data set PE, and Model D2 parameterized using data set PA (which provided 

the best predictions for the pulsed exposures and is used here as a reference). 

 The risks of specific mortality rates were computed as the percentage of days the rate was 

exceeded over the ten-year time-series.  Figure 3.8 shows the risks for 1% and 10% mortality per 

day as a function of mean exposures concentration for each time-series and model.  This figure 

supports the following observations: 

 
 75 



 
 76 

Figure 3.8.  Risk curves for 1% and 10% mortality per day versus average concentration for four exposure 
scenarios of log normal concentration distributions with different standard deviations (F) and daily 
autocorrelation coefficient (D).  Curves are given for model D2 parameterized using pooled data set PA ( ), 
for models D1 ( ), D2 ( ), D2X ( ), S1 ( ), and S2 ( ) parameterized using pooled data set 
PE.  The bold and narrow solid lines for model D2 are generally indistinguishable. 
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(1) These models can be used for providing useful information regarding a range of effect 
levels for a variety of exposure scenarios, allowing the risks of aquatic life criteria to be 
more meaningfully defined.  This includes relating effect levels to more easily monitored 
and controlled measures of exposure such as mean concentrations, rather than extreme 
values. 

(2) Figure 3.8 illustrates how mean concentrations must be lower for more variable 
exposures, which is expected because it is necessary to limit the high end of the 
concentration distribution responsible for most of the toxicity.  In contrast, the different 
daily autocorrelations examined have little effect on risk, because the effects for this 
endpoint and toxicant do not require high exposures for prolonged times. 

(3) For the deterministic models, there is very little effect of model formulation and 
parameterization.  The risk curves for the two different parameterizations of Model D2 
are not distinguishable on Figure 3.8, and differ only slightly from Model D2X.  Model 
D1 risk curves are also very similar to those for Model D2, predicting at most 20% higher 
median concentrations for the same probability of an effect, despite using only a single 
toxicity mechanism to describe the biphasic data.  The lack of sensitivity to model 
formulation is attributable to mortality for these exposure time-series being largely due to 
the slower toxicity mechanism, which is nearly identical for Models D2 and D2X and 
which is also reasonably approximated by the single mechanism of Model D1 (Table 
3.1).  In contrast, the pulsed exposures examined earlier were highly affected by the 
faster toxicity mechanism. 

(4) The stochastic models produce risk curves somewhat different than the deterministic 
models, tending to overestimate the risk of the larger effect levels and underestimate the 
risk of the smaller effect levels relative to Model D2.  This again reflects the lack of 
independence in these models between the effect of time and the number of organisms 
affected, which contributed to the poorer performance of these models for the pulsed and 
constant exposures examined earlier.  However, the deviations from the deterministic 
models are never large, being at most 50% and usually much smaller.  Thus, the 
deficiencies of these models do not keep them from having considerable utility for these 
types of exposure time-series. 
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 As noted earlier, the risk curves given here are just one example of how these models can 

be applied to aquatic life criteria.  Various other possibilities exist for toxicity endpoints, 

exposure measures, and structuring the population of organisms being evaluated.  More simple 

model applications are also possible.  For the stochastic models, risk curves similar to Figure 3.8 

would result from applying the models to a single cohort of organisms.  For the deterministic 

models, the lethal condition variable F(t) could be tracked without removing organisms when 

F(t) exceeds one to simply provide a "meter" for the severity of the exposure time-series.  These 

models could also be used merely to select better averaging periods under the current aquatic life 

criteria framework, without explicitly addressing the magnitude and time-variability of effects.  

Any final analysis needs to be tailored to the total framework being used for criteria (e.g., are 

these results to be fed into a population model?) and a more complete description of the exposure 

time-series to be addressed.  Nonetheless, the analyses presented here do demonstrate the 

feasibility of analyzing toxicity data with relatively simple models which then can provide 

information on risks useful for aquatic life criteria.   
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